SOFTWARE FEEDBACK IN SYSTEMS ENGINEERING THE LIFECYCLE

An Approach for Developing Complex Systems Using Control Theory
Assertion

- Complex Systems can effectively satisfy customers following a flexible software lifecycle approach that couples feedback control concepts with an incremental commitment to a solution
Introduction

• Jonathan Dorny
 Vice President/Chief Technology Officer
 Control Point Corporation
Complex Systems

- A system where the behavior as a whole is not intuitively understood by understanding the components

- Components include:
 - People (most complex variable)
 - Software
 - Electrical/Electronic
 - Mechanical
 - Fluid Flow
 - Thermal

Premise: It is not possible to fully understand a complex system prior to deploying it
System Modeling

• The purpose of modeling and simulation is to develop insight into how the system will act
• A rich, multi-disciplinary model improves first pass customer satisfaction, but new capability fosters new expectations
Traditional Systems Engineering Approach

- The classic Vee model insinuates a beginning and an end
- Customer Acceptance ≠ Customer Satisfaction
Control System Paradigm

- Provides a self-tuning execution that continuously adjusts for deviation from expectation
- Used because deviations are known to occur but the amount of deviation cannot be known a-priori

Diagram:
- Expectation -> Measured Error
- Controller: Controlling Factors
- System: Output
- Sensor: Measured Output
- Monitor
Complex System Models

- Four necessary models for complex systems provide the Expectation input:
 - Functional (what the system must do)
 - Behavioral (how the functions flow to fulfill needs)
 - Human (tasks performed using the system)
 - Reliability (what is required to sustain capabilities)
Incremental Commitment

• “Requirements and commitment cannot be monolithic or fully pre-specifiable for complex, human-intensive systems; increasingly detailed understanding, trust, definition and commitment is achieved through an evolutionary process.”[1]

• Not a large single commitment to the capabilities initially envisioned
 – smaller commitments to see whether the prospects of success are favorable
 – increased commitment based on better information on the prospects of success that emerge from each incremental gamble
 – “Satisfice” is the criteria for having progressed enough

Usage Analytics

- Web analytics provide a pattern for recognizing customer satisfaction from monitoring the user’s behavior
- Analyze
 - How the user arrived at a function
 - How long the user exercised a function
 - Geographical context in use of a function
 - Spatial exercise of a function
 - Demographic user classification
 - Unused or under-utilized functions
 - “Conversion” funnels - where user did not complete the task
SE Lifecycle Framework

- Incrementally commit to modeled behavior
- Establish next increment based on customer satisfaction use indicators
- Update controlling factors accordingly
Summary

• Complex systems require a closed-loop feedback systems engineering approach to assure products establish and maintain customer satisfaction

• For spaceflight software an incremental commitment to implementation with each increment following the Vee model will result in maturing only the functions that exhibit promising satisfaction indications

• An integrated model-based approach following a controls model establishes the mechanisms for rapid software development with dynamic adjustment to unexpected complex system response