Software development for safety-related automotive systems – the MISRA guidelines and ISO 26262

Dr David Ward
General Manager
Functional Safety

Agenda

- Motivations and challenges for system safety in the automotive industry
- What is the automotive industry doing?
- What are some of the future directions?
- How might these relate to other sectors?
MIRA delivers world class and independent vehicle engineering consultancy to the global automotive and transport industries

- Diverse global customer base from automotive, defence, aerospace and rail sectors
- Full vehicle systems design, test and integration engineering expertise — a “one-stop-shop”
- Discrete system engineering projects through to turnkey vehicle development programmes
- Advanced concept through to post-production support
- Unrivalled experience applied through a flexible, high-quality approach utilizing the latest tools and techniques
- Providers of advanced research and development, cutting edge technology to leaders in industry

The MISRA project

- Started in 1990
- Mission: “to provide assistance to the automotive industry in the creation and application of safe and reliable software in vehicle systems”
- The original project was part of the UK Government’s “SafeIT” programme
- Now self-supported
MISRA interests

- MISRA aims to
 - Promote best practice in automotive safety-related systems engineering
 - Develop guidance in specific technical areas in an “engineer-friendly” manner
- MISRA does not
 - Run certification schemes
 - Promote or endorse specific products

MISRA activities

- General engineering issues
 - MISRA Guidelines (1994)
 - Software readiness for production
 - MISRA Safety Analysis
- Language-specific issues
 - MISRA C
 - MISRA C++
 - MISRA AC family
 - MISRA Languages (planned)
Key MISRA publications

- November 1994: Development guidelines for vehicle based software (The MISRA Guidelines)
- April 1998: Guidelines for the use of the C language in vehicle based software (MISRA C)
- October 2004: MISRA-C:2004 – Guidelines for the use of the C language in critical systems (MISRA C2)
- November 2007: Guidelines for safety analysis of vehicle based programmable systems (MISRA SA)
- November 2007 onwards: MISRA AC family (model-based development/autocode)

Automotive system safety

- Safety has long been an important part of automotive engineering
 - But traditionally focused on specific areas e.g. in crashworthiness active and passive safety
- The increased technical sophistication of vehicles means a system-led approach to their safety is needed
 - Particularly, but not limited to, hybrid and electric vehicles
Hybrid vehicle safety

Overall safety
- Crash safety
- Electrical safety
- Functional safety
- Maintenance
- etc...

Unique automotive safety issues

- Mass-market consumer product
 - We all have a view!
 - Any perceived issues can lead to widespread adverse publicity
- Driver is part of control loop but receives little formal training in operating safety-related systems
- Long product lifetimes with maintenance difficult to assure outside warranty
“Driver in the loop” model

Specific automotive challenges

- Distributed control systems with high dependence on complex software
- Hybrid and electric vehicles – new systems with new potential failure modes
- “Drive by wire” systems
 - Working assumption that “off” is a safe state i.e. it is acceptable for systems to fail safe
The future

- Further integration, higher feature content
- Drive-by-wire systems that must be fault-tolerant
 - Brakes, steering
- Vehicle-to-X communications
 - Co-operative driving
 - Input to vehicle objectives from outside e.g. emissions control in sensitive areas

The future continued

- Autonomy e.g. unmanned ground vehicles (UGVs)
 - Vienna Convention: “Every vehicle must have a driver”
 - However … autonomy has many applications in defense, aerospace
 - May be based on technology from mass-market products
Automotive functional safety overview

Distributed control systems

Traditional vehicle

- Driver
 - Speed up
 - Change gear
 - Slow down
 - ABS/TCS/DSC
 - EMS
 - Engine
 - Transmission
 - Brakes

UGVs

- Operator
 - Torque
 - Direction
 - Deceleration
 - Vehicle manager
 - EMS
 - ETC
 - Steering ECU
 - BECU

Automotive system safety standards

- Early 1990s – work on functional safety in IEC SC 65A
 - Generic aspects of functional safety
 - Software
- 1994 MISRA Development Guidelines for Vehicle Based Software
 - Now in 7 parts
Automotive system safety standards

- 2004 German and French national initiatives
- November 2005 Official start of work on ISO 26262 Road vehicles — Functional safety at international level
- July 2009 ISO 26262 published as DIS (draft international standard)
- Mid-2011 (latest) – full international standard

IEC 61508

- Functional safety of electrical, electronic and programmable electronic safety-related systems
- The benchmark standard for developing and validating safety-related electronic systems
- Main principles are
 - Identify system risk and required risk mitigation (expressed as a Safety Integrity Level, SIL)
 - Perform the development and validation with a rigor matching the SIL
 - Demonstrate that the required risk reduction has been achieved
- Note that the risk reduction is usually achieved through a separate protection system or safety function
Basis of IEC 61508

- There is Equipment Under Control (EUC) which poses a threat to its environment

![Diagram showing EUC, Control System, Protection System, and Safety functions (continuous) and (on demand)]

- Safety functions are performed by E/E/PE systems
- Steps need to be taken to understand the risks involved and reduce them to an acceptable level

Some issues with applying IEC 61508 to automotive

- Developed for low-volume not mass-market products
- Methods for risk analysis are informative and industry interpretation is always needed
- Subcontracting of work not addressed
- Human factors issues only briefly addressed
 - Does not address the “driver in the loop”
- Does not reflect state-of-the-art automotive development processes e.g. use of embedded systems and model-based development
MISRA Safety Analysis

- Guidelines for safety analysis of vehicle based programmable systems
- Provides guidance on safety management
 - Useful for establishing processes e.g. in accordance with IEC 61508 or ISO 26262
- Provides process for automotive hazard and risk analysis
 - Explains this from “first principles”
- Risk graph for hazard classification
 - Permits adaptation or calibration for different application requirements e.g. UGVs
 - Takes account of designated safety systems

ISO 26262

- Road vehicles – Functional safety
- A functional safety standard specifically for passenger cars
 - Claims to be “the” automotive version of IEC 61508
- Timetable
 - DIS (first public version) July 2009
 - FDIS (second public version) February 2011*
 - Full standard July 2011*
- Excluded from scope
 - Trucks and buses
 - Specialist adaptations of cars

* Guideline dates
Objectives of ISO 26262

- Maintain “comparability” with IEC 61508 for product liability reasons
- Adapt the safety lifecycle to the typical automotive development and operation phases
- Include requirements for relationships between manufacturers and suppliers, and for distributed development processes
- Adapt the hazard analysis and risk assessment for typical automotive use cases
- Allow for application of typical automotive validation tests
- Hardware-in-the-loop, whole vehicle simulation environments, fleet tests and user-oriented tests

Overview of an automotive functional safety process

- System definition
- Hazard analysis and risk assessment
- Safety requirements
- Design and realization
- Description of system or function and its boundaries
- Collection of driving situations
- Malfunction of technical system
- Safety class (e.g. ASIL D)
- Safety goals (e.g. no de-stabilization)
- Safety integrity requirement (How good)
 - e.g. <10^-6 dangerous failures/h - process requirements
 - Safety function (What)
 - e.g. do not send wrong signal
- Design and implementation
- Verification and Validation
- Safety Analysis (FMEA, FTA, Markov, ...)
- Safety Case

Source: ISO 26262 Introductory Presentation
Automotive functional safety overview

Some issues with ISO 26262

- ISO ASILs do not align with IEC SILs
 - Difficult to “read across” components between different sectors
 - e.g. electric motor controller and battery management may be reused in different applications
- No provision for emerging technology e.g.
 - Vehicle-to-X communication
 - Autonomy
 - Some systems in hybrid/electric vehicles more like the safety/protection systems of IEC 61508
So what about software?

- So far this presentation has (intentionally) focused on system approaches to system safety
 - A key strength of IEC 61508 and ISO 26262 is that design for safety is system-led
 - Top-level safety requirements lead to requirements for system, hardware and software development
 - Development lifecycle
 - Specific requirements for process and product
 - Specific techniques (IEC) or methods (ISO)
So where does MISRA C fit?

- Coding guidelines and subsets are required by many safety-related standards
 - Not only for C
- C is popular for embedded systems because
 - It is specified in an International Standard
 - It is widely implemented
 - Compiles into efficient code
 - It provides access to low-level machine features
- Its drawbacks include
 - Many aspects of program behavior not specified
 - Implementations vary widely
 - It provides access to low-level machine features
- MISRA C aims to reduce the uncertainties associated with these drawbacks

MISRA C history

- First version of MISRA C published in 1998
- Second version published in 2004 with Technical Corrigendum in 2007
 - More specific and definitive guidance
 - Based on C90 as support for C99 by embedded compiler vendors was limited at the time
- Originally intended for automotive use but has become widely accepted in many industries
In conclusion

- The automotive industry has some specific challenges in safety-related systems and their software, but many of the general principles are the same.
- MISRA C is a good example of how guidance developed for an automotive need has benefited other sectors.
- Going forward we look forward to ongoing cooperation.

For further details

- David Ward
 - + 44 24 7635 5430
 - david (dot) ward (at) mira (dot) co (dot) uk
 - www.mira.co.uk
- MISRA information
 - www.misra.org.uk