
Integration of a Flash File System with
VxWorks® and RTEMS

Robert Klar, Sue Baldor, and Allison Bertrand
Southwest Research Institute

December 19-21, 2011 Flight Software Workshop 2

Motivation: Mass Memory Board
• An EM version w/o stacked

memory was created
– 6 Gigabytes of Flash
– 128KB of C-RAM

• A lightweight file system is
desirable to support a wider
variety of storage applications

• A high-capacity Mass Memory
Module (MMM) was designed for
the Magnetospheric Mutiscale
(MMS) Mission

– 128 Gigabytes of Flash
– 1 MB of SRAM and EEPROM
– 6U cPCI Form Factor

• The MMM was designed to
support a hybrid CCSDS File-
Delivery Protocol implementation

– Does not use a File System

• Multi-Mission Mass Memory (M4) -
smaller form factor board was
designed to support multi-mission
applications

– 48 Gigabytes of Flash
– 1 MB of C-RAM
– 3U cPCI Form Factor

December 19-21, 2011 Flight Software Workshop 3

Software Goals/Requirements

• Make efficient use of the Mass Memory Board
• Provide wear-leveling of the Flash in order to maintain

storage capacity for missions of a few years duration
• Provide support for file naming and directory structures
• Support common embedded operating systems such

VxWorks® and RTEMS
• Require only a small amount of processor memory
• Provide for a responsive system
• Provide software which can be quickly made available to

customers and put to use
– Both TrueFFS and YAFFS have additional third party licensing

requirements for use in commercial products

December 19-21, 2011 Flight Software Workshop 4

Reason for Wear-Leveling

• NAND Flash is a limited-life component
– NAND Flash is rated at ~100,000 erase cycles

• Flight-qualified Flash is derated to ~10,000 erase cycles

• Traditional File Allocation Table (FAT) File Systems were
not designed for use with Flash devices
– FAT is stored in a fixed physical location resulting in frequent

updates to the same physical erase block
• A conventional FAT file system would exceed limit very quickly

without wear-leveling
• For example, for an 8MB file, using a Cluster size of 8K, the erase

limit would be exceeded on the FAT after only 10 writes of the file
8 MB / 8K = 1024 writes to the FAT per file write

10 * 1024 = 10240 writes to FAT for 10 writes to file

December 19-21, 2011 Flight Software Workshop 5

Where to do Wear-Leveling

• Wear-leveling can be accomplished at several levels:
– Hardware Controller

• Off-the-shelf USB Flash Drives commonly use this approach. This
allows the use of file systems not specifically designed for Flash.

– Device Driver
• This offers some of the same benefits as a hardware controller but

adds a little complexity to the device driver. It has the advantage
that we can make use of some of the features provided by the
hardware design.

• This is the alternative we chose!

– File System
• This also works well but may bring along some additional overhead.

Configuring a file system to make use of your particular Flash
device requires some work.

December 19-21, 2011 Flight Software Workshop 6

Data Block Terms and Sizes

• Sector = 512 bytes (smaller than smallest writable unit)
• Cluster = Flash Write Page = 16 Sectors = 8192 bytes
• Erase Block = 512 Clusters = 4 MB
• Total Flash = 1536 Erase Blocks = 6 GB

Flash Memory = 1536 Erase Blocks

Erase Block = 512 Clusters

Cluster

December 19-21, 2011 Flight Software Workshop 7

Approach to Wear-Leveling

• Use conventional FAT32 but relocate the FAT
• Do Logical to Physical Mapping

– As FAT is updated, move portions of the table in order to evenly
distribute erase cycles

• Take advantage of hardware features
– M4 keeps some File Management Data in C-RAM for each

Erase Block
• Number of Erase Cycles
• Bad Block Vector
• Timestamp (managed by software)
• Cluster State Counts (managed by software)

– ERASED, USED, or INVALID

• Do Garbage Collection
– Reclaim blocks when majority of pages are no longer used

December 19-21, 2011 Flight Software Workshop 8

VxWorks® and RTEMS
File Systems

• VxWorks® has
traditionally provided
support for a variety
of File Systems
– RT-11 (deprecated)
– DOSFS
– Highly Reliable File

System
– TrueFFS (optional)

• RTEMS includes
support for several
simple File Systems
– In-Memory File

System (IMFS)
– Mini-IMFS
– MSDOS File System
– RTEMS File System

(RFS)

December 19-21, 2011 Flight Software Workshop 9

Structure of FAT File System

• Common FAT File Systems are FAT12, FAT16, and
FAT32
– FAT32 is the newest of these and includes support for the

largest number of Clusters
– FAT12 and FAT16 are not suitable for large capacities

• Smallest organizational unit is a Sector = 512 bytes
• First sector on media is the Boot Sector

– This sector contains information about how the media is
formatted

– The Boot Sector includes the number of Sectors per Cluster
• Following the Boot Sector are the File Allocation Tables

– Allocation unit is a Cluster
• Following the File Allocation Tables is the Root Directory

– Root Directory can be located anywhere in data area in FAT32

December 19-21, 2011 Flight Software Workshop 10

A Cached Block Driver

• VxWorks® 5.5 included a
Cached Block I/O (CBIO)
interface to dosFS

• VxWorks 6.x added
features and changed the
interface to use the
eXtended Block Device
(XBD) Framework

• RTEMS provides cached
support for the MSDOS
File System through the
Block Device Library
(libblock)

File System
(FAT32)

Cached Block
Interface

Block Driver

Cluster
Remapping

Device
Cluster

Primitives

December 19-21, 2011 Flight Software Workshop 11

A Cached Block Driver

• Device Cluster Primitives
– Invoked by Operating System File System
– VxWorks 5.5 and RTEMS 4.10 have similar primitives

• Read Block
• Write Block
• Verify Block (RTEMS)
• I/O Control (VxWorks)

– VxWorks 6.x introduces “queued work”
• A device driver task operates on a queue of structures

– VxWorks 6.x has different primitives
• xf_ioctl - provide interface for miscellaneous control functions
• xf_strategy - queue work and wakeup device driver task
• xf_dump - provide fast way to write data in event of a fault

These are our
entry points.

December 19-21, 2011 Flight Software Workshop 12

Initialization Steps

• VxWorks 5.5
Initialization
– Create Device

Descriptor

• m4DevCreate()
– Create Volume

Configuration
Structure

• dosFsConfigInit()
– Create Volume

Descriptors

• dosFsDevInit()

• RTEMS 4.10 Initialization
– Setup Device Descriptor

– Setup Configuration Structure
– Setup Block Device I/O Ops

Structure

– Register the driver with the I/O
system

December 19-21, 2011 Flight Software Workshop 13

Data Structures

• File Allocation Table
– Stored in Flash

– Relocated to Data
Area Blocks

• Logical to Physical
Look Up Table
– Stored in Flash

• Plan to
eventually use
C-RAM for
caching

– Map Logical
Cluster to Physical
Cluster

LPT
Cluster 1

384 x
8192

bytes =
3072

kilobytes

8192
bytes

Stored in
C-RAM

File
Allocation

Table

Logical to
Physical
Look Up

Table

FAT
Cluster 0

LPT
Cluster 0

LPT
Index

8192
bytes

384 x
8192

bytes =
3072

kilobytes

Stored in
Flash

Stored in
Flash or
C-RAM

Stored in
C-RAM

December 19-21, 2011 Flight Software Workshop 14

Data Structures /
Cluster Selection Heaps

• Two small heaps are kept in processor RAM
– Each is less than the total number of Erase Blocks (1536)
– A Free Cluster Heap is used to prioritize Erase Blocks which

contain some ERASED clusters by fewest number of Erase
Cycles

• Next physical cluster is at the top of the heap
• High priority is a low number

– A Reclamation Cluster Heap is used to prioritize Erase Blocks
which do not contain ERASED clusters by fewest number of
(Erase Cycles, Number of USED Clusters)

• Number of Erase Cycles is periodically compared to top of
Free Cluster Heap to determine need for Garbage Collection

• High priority is a low number

December 19-21, 2011 Flight Software Workshop 15

Data Structures
• Cluster Map shares memory

with LPT
– Uses most-significant bits

of each 32-bit word
– 2 bits indicate Cluster State

• ERASED, USED,
INVALID

– 2 spares – possibly could
be used to add C-RAM
caching

– This is OK because FAT32
only uses 28 bits to
represent a Cluster

– Cluster Map represents
Physical Cluster rather
than Logical

• C-RAM is used for several
purposes
– Keep index to LPT 0 Cluster

so that we can find it at
initialization

• Index is rotated through
circular buffer in C-RAM to
avoid wearing C-RAM
word

• Location of pointer is kept
in RAM but must be
discovered at initialization

– Count number of writes to
same LPT Cluster

• Avoid moving Clusters if not
necessary

December 19-21, 2011 Flight Software Workshop 16

Writing to Flash
• File System invokes Driver Write Block routine to write a Logical

Cluster
– May be a Data Cluster or a FAT Cluster

• The Driver looks up the Logical Cluster in the LPT. If a Physical
Cluster is mapped already, then it is marked as INVALID in the
Cluster Map. USED and INVALID counters are updated in the Erase
Block.

• The Driver gets the next available ERASED Physical Cluster by
looking at the Erase Block at top of the Free Cluster Heap. The
Physical Cluster is marked USED in the Cluster Map. The
corresponding USED and INVALID counters are updated in the
Erase Block. If this was the last ERASED Physical Cluster in the
Erase Block, then the Erase Block is removed and put on the
Reclamation Cluster Heap.
– The corresponding Cluster Map Cluster is updated (and moved if

necessary, overwriting an ERASED block).
– The corresponding LPT Cluster is updated (and moved if necessary,

overwriting an ERASED block).

December 19-21, 2011 Flight Software Workshop 17

Garbage Collection

• Some Erase Blocks will contain data that seldom
changes. Over time this results in a disparity in the
number of erase cycles between these blocks and
others.
– To avoid this, Erase Blocks which contain only USED Clusters

but that have few erase cycles will be periodically moved so that
these become available to the Cluster Selection Algorithm

• Currently done inline in Write Block

December 19-21, 2011 Flight Software Workshop 18

Worst-Case Performance
• For each Data Cluster write there are additional writes to update

data structures
– Up to 5 Cluster writes to Flash

• 2 writes to corresponding LPT Cluster (for Data Cluster) and Cluster Map
– writes will depend on frequency of accessing same LPT Cluster
– up to 4 writes if just writing 0’s

• 1 write to corresponding FAT Cluster
– Cluster must be moved if Logical Cluster is replaced
– up to 4 writes if just writing 0’s

• 2 writes to corresponding LPT Cluster (for FAT Cluster) and Cluster Map
– writes will depend on frequency of accessing same LPT Cluster
– up to 4 writes if just writing 0’s

– Up to 3 Cluster writes to C-RAM
• 1 write to count writes to LPT
• 1 write to new LPT pointer

– same word accessed every 8192 times LPT 0 moves
• 1 Write to set value of previous LPT pointer to INVALID

– same word accessed every 8192 times LPT 0 moves

December 19-21, 2011 Flight Software Workshop 19

Next Steps

• Potential Optimizations
– Use C-RAM to cache Clusters for LPT, Cluster Map and FAT

• Reduce the number of Flash writes for moving frequently
used Logical Clusters

– Background Garbage Collection
• Low priority task

– Use block driver with a different File System

• Next Steps
– Testing with VxWorks 5.5 and RTEMS 4.10 over next few

months
• Compute Average Performance with operational scenario

– Testing with VxWorks 6.x

December 19-21, 2011 Flight Software Workshop 20

Questions?

