
© 2011 GrammaTech, Inc. All rights reserved

Tracing Data Flows to Find Concurrency Errors

Presented by: Benjamin Ylvisaker

Senior Scientist
GrammaTech, Inc.
531 Esty Street,
Ithaca, NY 14850
Tel: 607 273-7340
E-mail: benjaminy@grammatech.com

GrammaTech Profile

! Spun out of Cornell
Ý! Tim Teitelbaum, CEO and co-founder, Emeritus faculty at Cornell

Ý! Tom Reps, President and co-founder, Faculty at U. Wisconsin

! Focus
Ý! Program analysis and manipulation
Ý! Source and binaries

! Some customers
Ý! JPL (site license), Mitre, Draper, NASA, Airbus

Page 2 © 2011 GrammaTech, Inc. All rights reserved

New Tools for Static Concurrency Bug
Detection
! Detection of data races

Ý! DARPA-funded research

! Detection of deadlock and other misuses of locks
Ý! NASA-funded research

Ý! In partnership w/ Gerard Holzmann at JPL
¥! Power of 10

© 2011 GrammaTech, Inc. All rights reserved Page 3

Agenda

! Why multi-core is important

! Why concurrent programming is hard

! How static analysis can help find concurrency defects

Page 4 © 2011 GrammaTech, Inc. All rights reserved

© 2011 GrammaTech, Inc. All rights reserved Page 5

Soon (almost) All Processors will be
Multi-core
! Scaling of single-threaded performance has fallen off a cliff

in the last couple of processor generations

! All processor vendors are moving to multi-core designs
Ý! Even embedded processors

! But there are some major obstacles to adoption
Ý! Applications need to be explicitly concurrent

¥! Automatic parallelization still not mainstream

Ý! (Correct) concurrent programming is difficult

Concurrency Adds a New Source of
Complexity

© 2011 GrammaTech, Inc. All rights reserved Page 6

! "

! "

There are six possible interleavings of two threads with two instructions each.
With three instructions each, there are twenty possible interleavings.

Non-deterministic Ordering in the Real
World
! Real-world threads execute billions of instructions per

second

! Interleavings are determined by real-world events and the
system scheduler

! Ordering of events and scheduling choices are effectively
non-deterministic

! Correctness of execution can depend on relative ordering
Ý! Race conditions are a major source of unintended time/scheduling

dependence

© 2011 GrammaTech, Inc. All rights reserved Page 7

Eliminating Data Races

! Programs can be designed to be less sensitive to
scheduling variation

Ý! Less sensitive => traditional software QA is more effective

! Potential data races and lock misuse are major sources of
unintended sensitivity to scheduling variation

! CodeSonar helps eliminate potential data races and lock
misuse

© 2011 GrammaTech, Inc. All rights reserved Page 8

Data Races

! A data race arises when:
1.! Multiple threads of execution access a shared piece of data

2.! At least one thread changes the value of the data

3.! Access is not separated by explicit synchronization

! Data races can leave a system in an inconsistent state

! Data races can lurk undetected and only show up in rare
circumstances with mysterious symptoms

© 2011 GrammaTech, Inc. All rights reserved Page 9

Example Data Race

© 2011 GrammaTech, Inc. All rights reserved Page 10

9 count:

Thread 1 Thread 2

count := count + 1; count := count - 1; 10 9

count := count + 1;

load value from memory into register
increment value

store value back in memory

Data Races are Hard to Debug

! Rare occurrence means little chance of detection during
testing

! Diagnosis is difficult

! Reproducibility is a major problem

! Developers tend to assume each thread executes in-order
(sequential consistency)

Ý! Effects of thread interaction easy to miss

© 2011 GrammaTech, Inc. All rights reserved Page 11

We Built Data Race Detection on an
Existing Static Analysis Tool -- CodeSonar

! Static bug finder

! Uses symbolic execution for whole-program path-sensitive
analysis

Ý! Bottom-up in the call graph (callees analyzed before callers)

Ý! Equivalent paths are summarized together to save space

Ý! Precise pointer analysis and feasible inter-procedural path extraction

© 2011 GrammaTech, Inc. All rights reserved Page 12

Finding Data Races at their Source

! We use a lockset-style approach
Ý! For each shared memory location, all accesses must be protected

by a single lock

! During symbolic execution, find what locks are held when
shared memory locations are accessed

! Find thread entry points (with library models)

! For each pair of thread entry points and each shared
memory location, intersect the sets of locks to find possible
data races

© 2011 GrammaTech, Inc. All rights reserved Page 13

© 2011 GrammaTech, Inc. All rights reserved Page 14

No, that Data Race is Not Benign

! Double-checked locking for lazy initialization

! !"#$%!&!'(")*+ ,#-#
#)./0$,1#
#!"#$%!&!'(")*+ ,#-#
#23(4*'* #5#6661#
#!&!'(")*+ #5#'7891#
#:#
#8&)./0$,1#

:#
'2; #5#23(4*'* 1#

! See Boehm, ÒHow to Miscompile Programs with ÔBenignÕ Data RacesÓ

© 2011 GrammaTech, Inc. All rights reserved Page 15

How CodeSonar Detects Deadlocks

! Most commonly adopted approach to avoiding deadlock is
to assign a partial ordering to the resources

Ý! Proposed by Dijkstra in 1965 as a solution to the Dijkstra/Hoare
Dining Philosophers Problem

! If it is possible for lock A to be held when lock B is acquired,
A is ÒbeforeÓ B

! CodeSonar examines the code and issues a Conflicting
Lock Order warning if any pair of locks can be acquired in
different orders by different threads

© 2011 GrammaTech, Inc. All rights reserved Page 16

Additional Concurrency Checks

! Process starvation

! Unknown Lock

! Missing Lock, Missing Unlock, Lock/Unlock Mismatch

! Double Lock, Double Unlock

! Try-lock that will never succeed

© 2011 GrammaTech, Inc. All rights reserved Page 17

Conclusions

! Multi-core processors are inevitable
Ý! Explicitly concurrent programming is the only reliable way to harness

the performance of multi-cores today

! Concurrency errors are insidious
Ý! Difficult to reproduce, diagnose, and eliminate

Ý! Even apparently benign data races can have surprisingly detrimental
consequences

! We are bringing research in static detection of concurrency
defects to industrial-strength bug finding tools

© 2011 GrammaTech, Inc. All rights reserved Page 18

Thanks for Your Attention

© 2011 GrammaTech, Inc. All rights reserved Page 19

Questions?

