@ GRAMMATECH

Tracing Data Flows to Find Concurrency Errors

Presented by: Benjamin Ylvisaker

Senior Scientist
GrammaTech, Inc.
531 Esty Street,
Ithaca, NY 14850
Tel: 607 273-7340

E-mail: benjaminy@grammatech.com

© 2011 GrammaTech, Inc. All rights reserved

GrammaTech Profile

=| Spun out of Cornell
Y Tim Teitelbaum, CEO and co-founder, Emeritus faculty at Cornell
Y Tom Reps, President and co-founder, Faculty at U. Wisconsin

=l Focus

Y Program analysis and manipulation
Y Source and binaries

=] Some customers
Y JPL (site license), Mitre, Draper, NASA, Airbus

Page 2 © 2011 GrammaTech, Inc. All rights reserved @ GRAMMATECH

New Tools for Static Concurrency Bug
Detection

=| Detection of data races
Y DARPA-funded research

=l Detection of deadlock and other misuses of locks
Y NASA-funded research

Y In partnership w/ Gerard Holzmann at JPL
¥ Power of 10

|
Page 3 | © 2011 GrammaTech, Inc. All rights reserved @ GRAMMATECH

Agenda

= Why multi-core is important
= Why concurrent programming is hard

=| How static analysis can help find concurrency defects

Page 4 © 2011 GrammaTech, Inc. All rights reserved @ GRAMMATECH

Soon (almost) All Processors will be
Multi-core

»| Scaling of single-threaded performance has fallen off a cliff
In the last couple of processor generations

=! All processor vendors are moving to multi-core designs
Y Even embedded processors

=| But there are some major obstacles to adoption

Y Applications need to be explicitly concurrent
¥ Automatic parallelization still not mainstream

Y (Correct) concurrent programming is difficult

Page 5 © 2011 GrammaTech, Inc. All rights reserved @ GRAMMATECH

Concurrency Adds a New Source of

Complexity
___ Iy & 11
HE N
Hol L
11T
-

There are six possible interleavings of two threads with two instructions each.
With three instructions each, there are twenty possible interleavings.

\
Page 6 | © 2011 GrammaTech, Inc. All rights reserved @ GRAMMATECH

Non-deterministic Ordering in the Real
World

»| Real-world threads execute billions of instructions per
second

| Interleavings are determined by real-world events and the
system scheduler

»! Ordering of events and scheduling choices are effectively
non-deterministic

=| Correctness of execution can depend on relative ordering

Y Race conditions are a major source of unintended time/scheduling
dependence

Page 7 © 2011 GrammaTech, Inc. All rights reserved @ GRAMMATECH

Eliminating Data Races

*| Programs can be designed to be less sensitive to
scheduling variation
Y Less sensitive => traditional software QA is more effective

»| Potential data races and lock misuse are major sources of
unintended sensitivity to scheduling variation

=l CodeSonar helps eliminate potential data races and lock
misuse

Page 8 © 2011 GrammaTech, Inc. All rights reserved @ GRAMMATECH

Data Races

=| A data race arises when:
1.! Multiple threads of execution access a shared piece of data
2.! At least one thread changes the value of the data
3.! Access is not separated by explicit synchronization

»| Data races can leave a system in an inconsistent state

»| Data races can lurk undetected and only show up in rare
circumstances with mysterious symptoms

Page 9 © 2011 GrammaTech, Inc. All rights reserved @ GRAMMATECH

Example Data Race

Thread 1 Thread 2

count := count + 1: count;: D count := count - 1:

D)
A A

= B BEEE BN H BB

O O

load value from memory into register
count := count + 1; j> increment value
store value back in memory

\
Page 10 | © 2011 GrammaTech, Inc. All rights reserved @ GRAMMATECH

Data Races are Hard to Debug

=l Rare occurrence means little chance of detection during
testing

=| Diagnosis is difficult
=| Reproducibility is a major problem

=| Developers tend to assume each thread executes in-order
(seqguential consistency)
Y Effects of thread interaction easy to miss

Page 11 © 2011 GrammaTech, Inc. All rights reserved @ GRAMMATECH

We Bullt Data Race Detection on an
Existing Static Analysis Tool -- CodeSonar

| Static bug finder

=| Uses symbolic execution for whole-program path-sensitive
analysis
Y Bottom-up in the call graph (callees analyzed before callers)

Y Equivalent paths are summarized together to save space

Y Precise pointer analysis and feasible inter-procedural path extraction

|
Page 12 | © 2011 GrammaTech, Inc. All rights reserved @ GRAMMATECH

Finding Data Races at their Source

= We use a lockset-style approach

Y For each shared memory location, all accesses must be protected
by a single lock

=| During symbolic execution, find what locks are held when
shared memory locations are accessed

*| Find thread entry points (with library models)

=! For each pair of thread entry points and each shared
memory location, intersect the sets of locks to find possible
data races

Page 13 © 2011 GrammaTech, Inc. All rights reserved @ GRAMMATECH

@ CODESONAR search | code in this analysis E]] for

Search | Advanced Search

Home > gnuchess-5.07-rck » gnuchess-5.07-rck analysis 2 » Waming 91.121 @ Text | XML | ReML | Visible Code: [all B
Data Race at input c 142 No properties have been set. | edit properties
Jump to warning location | warning details. .
Show Events | Change View | Options
thread 1 <> thread 2 <>
main input_func
(/home/benjaminy/Sandboxes/TRUNK_CLEAN/codesonar-tests/regression/hookbench (/home/benjaminy/Sandboxes/TRUNK_CLEAN/codesonar-tests/regression/hookbench
/gnuchess-5.07-rck.temp/gnuchess-5.07/sre/main.c) /gnuchess-5.07-rck.temp/gnuchess-5.07/sre/input.c)
A A
A 290 int main (int argc, char *argv({]) A 119 void *input_func(void *arg _ attribute__ ((unused)))
£\ Event 1: Thread 1 starts here. v hide A Event22- Thread 2starts here. a v hide
291 { 120 {
292 int i; 121 char prompt [MAXSTR] = "";
293 122
294 /* 123 w while (! (flags & QUIT)) (
295 * Parse command line arguments conforming with 124 gy if (!(flags & XBOARD)) {
125 sprincf (prompe, "ts (3d) : ",
seesscsccscccnncnnnne 126 RealSide ? "Black"™ : "White",
127 (RealGameCnt+l)/2 + 1);
450 RealSide = board.side; 128 }
451 dbg_printf("Waking up input...\n"): 129 pthread mutex lock(&input_mutex);
452 dbg_printf("input_status = %d\n", input_status): 130 gnuchess getline(prompt);
453 [input_wakeup () ; 131 input_status = INPUT_AVAILABLE;
132 pthread cond_signal (éinput_cond):
L ;%MWUN KLU AN Code e et oot o500k 133 pthread_mutex_unlock(&input_mutex)
-5.07-rck temp/gnuchess-5.07/sre/input.c) 134
- A 135 pthread mutex lock(&wakeup mutex);
A 136 /’*
150 void input_wakeup (void) 137 * Posix wvaits can wvake up spuriocusly
151 { 138 * so ve must ensure that ve keep vaiting
1sz2 139 * yntil ve are voken by something that has
A 153 pchread_mn:ex_lock(Ginpu:_mu:ex) H 140 * consumed the input
154 input_status = INPUT_NONE: 141 ./
Data Race 142 while (input_status == INPUT_AVAILABLE) ({
This code writes to input_status. Data Race
« The other thread reads from input_status. See other access. This code reads from input_status.
* The following locks are currently heid: input_mutex. « The other thread writes 1o input_status. See other access.
o None of these locks are held by the other thread when it « The following locks are currently hekd: wakeup_mutex
R P i S e s o None of these locks are held by the other thread when it accesses
The issue can occur if the highlighted code executes. input_status S0 a race may occur.
The issue can occur if the highlighted code executes.
Show: All events | Only primary events
v Show: All events | Only primary events
A4 v
<« » L »

Page 14 © 2011 GrammaTech, Inc. All rights reserved

GRAMMATECH

No, that Data Race Is Not Benign

»| Double-checked locking for lazy initialization

ol 1"#$% &) (") *+ H-#

#)./0$,1#
#I"HSW &' (") + H-H#
#23(4** #5#6661#
#1&!'(")*+ #5#'7891#
HH
#8&)./0$,1#

T

‘2, #5#23(4** 1#

=] See Boehm, OHow taMiscompile Programs with OBenignO Data RacesO

PPPPPP © 2011 GrammaTech, Inc. All rights reserved @ GRAMMATECH

How CodeSonar Detects Deadlocks

= Most commonly adopted approach to avoiding deadlock is
to assign a partial ordering to the resources

Y Proposed by Dijkstra in 1965 as a solution to the Dijkstra/Hoare
Dining Philosophers Problem

=l If it Is possible for lock A to be held when lock B is acquired,
A is ObeforeO B

= CodeSonar examines the code and issues a Conflicting
Lock Order warning if any pair of locks can be acquired In
different orders by different threads

Page 16 © 2011 GrammaTech, Inc. All rights reserved @ GRAMMATECH

Additional Concurrency Checks

*| Process starvation

=l Unknown Lock

=| Missing Lock, Missing Unlock, Lock/Unlock Mismatch
=| Double Lock, Double Unlock

»| Try-lock that will never succeed

PPPPPP © 2011 GrammaTech, Inc. All rights reserved @ GRAMMATECH

Conclusions

=| Multi-core processors are inevitable

Y Explicitly concurrent programming is the only reliable way to harness
the performance of multi-cores today

=! Concurrency errors are insidious
Y Difficult to reproduce, diagnose, and eliminate

Y Even apparently benign data races can have surprisingly detrimental
consequences

= We are bringing research in static detection of concurrency
defects to industrial-strength bug finding tools

Page 18 © 2011 GrammaTech, Inc. All rights reserved @ GRAMMATECH

Thanks for Your Attention

Questions?

Page 19 © 2011 GrammaTech, Inc. All rights reserved @ GRAMMATECH

