Multi-Core Processing in Flight Software

David Edell
Introduction

• Multi-core processors are ubiquitous in the consumer world and are now entering the realm of space-qualified processors.
 - The Aeroflex Gaisler GR712RC and LEON4 are among the first of these processors.
 - GR712RC is a dual-core SBC
 - A quad-core Leon4 is available on the RASTA box

• A joint IRAD between APL and GSFC explored the capabilities of the multi-core LEON processor and how to utilize it in the cFE flight software architecture.
 - The Core Flight Executive (cFE) is an open source message bus and service framework for flight software created by GSFC.
 - We investigated Asymmetric (AMP) and Symmetric Multi-Processing (SMP) in both kernel-mode and user-mode (MMU-protected) environments.
 - Primary focus on SMP architecture, including VxWorks and Linux
 - Brief exploration of AMP capabilities under RTEMS
Asymmetric vs Symmetric Multi-Processing

• **Uniprocessor (UP) Systems**
 – Single CPU per system

• **Asymmetric Multi Processing (AMP)**
 – Multiple CPUs per system acting independently

• **Symmetric Multi Processing (SMP)**
 – Multiple CPUs per system managed by a single operating system
Asymmetric Multi-Processing (AMP)

- Each CPU executes an independent instance of the operating system
- Standard IPC techniques are used for message exchange between cores
 - Shared message queues
 - Loopback network interface
- Hardware resources can be allocated to specific cores.
 - Each CPU is assigned a distinct area of memory and h/w resources
- OS Support:
 - VxWorks supports AMP, but the Gaisler BSP does not.
 - RTEMS includes full support for AMP
 - Additional steps are required to load and execute AMP images
Symmetric Multi-Processing

• A single OS operates across multiple processor cores
• OS can dispatch tasks to any core at runtime
 ➢ By default, tasks ‘float’ between cores based on priority and CPU availability.
 ➢ A task may be explicitly bound to a specific core(s) using an “affinity” flag
• LEON BSP for VxWorks 6.7 supports SMP
 ➢ RTEMS support for SMP is under development, but was not in a usable state at the start of this IRAD.
 ➢ SMP is common in many operating systems (ie: Windows, Linux, and Android)
• Linux SMP
 – Baseline testing was done using a standard multi-core computer running the Linux port of cFE
SMP Task Affinity

• All tasks have a CPU Affinity attribute
 – Defines the set of CPUs a task or thread may execute on.
 – Set on task creation
 – May be updated at any time through an OS API
 – Task scheduling is a product of affinity and priority

• Task Affinity can be
 – Floating tasks are permitted to execute on any available CPU
 – If no affinity is set, a task will typically inherit the affinity of its parent

• Task Affinity is used on all SMP Operating Systems
 – VxWorks and Linux use similar cpuset macros.
 – Functionality is generally equivalent, though function names differ
Multi-Core Applications and cFE

• Extensions to the OSAL to support SMP
 – CPU Affinity can optionally be defined on task creation
 – OS API functions permit querying and re-assigning task affinity at runtime
 - By default, any task may adjust the affinity on itself or others
 - OSAL may be configured to restrict access based on target and caller task affinity.
 – Affinity functions have no effect on non-SMP systems
 - Functions will always return success, unless user explicitly sets affinity to a non-existent core.
 – All API changes are backwards-compatible
 - Implemented for VxWorks and Linux, stubbed-out for RTEMS

• SMP for cFE Architecture
 – Application startup file defines affinity for all applications
 – Mission has flexibility to determine how to allocate resources between processors
Task Affinity in cFE (user mode)

- MMU protected (user mode) extensions were made to cFE under previous IRAD efforts
 - Each POSIX process or VxWorks RTP contains a complete instance of the core flight executive (cFE)
 - Software Bus Network (SBN) application seamlessly bridges processes
 - Utilizes a loopback network interface.
 - May be extended for usage between cores for AMP

- SMP Extensions
 - Affinity may be defined for processes in startup file
 - Definition is the same as for individual tasks
 - By default, all tasks will inherit affinity from the root task in the thread or process.
 - Affinity can NOT be directly changed at runtime for a process
 - Each task/thread in that process must be explicitly changed

- System Architecture determined by mission needs
 - A single process can be defined per core
 - Processes can float between cores with explicit affinity set for applications
Multi-Processing Considerations

- Applications generally do not require any modifications to run in an SMP environment.
- Mutual exclusion semaphores automatically work across cores
- Spinlocks can provide improved performance in certain cases.
 - Allows a task to pend on a mutex without relinquishing the CPU
 - Available in VxWorks 6.6+ and reverts to standard mutex behavior in uniprocessor (UP) systems.
- Hardware interrupts may be bound to specific cores
- Global interrupt and task locks are not possible on a multi-core system
 - A task may lock interrupts and/or tasks on the current core.
 - Tasks and interrupts will continue executing normally in other cores.
VxWorks SMP Experiences

• Board Support Package
 – Gaisler SMP support requires VxWorks 6.7
 – Previous Leon3 development has used VxWorks 6.5
 – User-mode (MMU) support in LEON3 VxWorks BSP lacks maturity

• Several BSP issues were encountered
 – Significant time was spent communicating with Gaisler to address various BSP issues.
 ➢ Majority of issues related to user-mode
 – BSP issues were primarily split between 6.7 SMP issues, general MMU issues and related system configuration.
VxWorks SMP Debugging

- Multi-core system can make it difficult to isolate the cause of an issue.
 - Once isolated and reproducible in a test case, Gaisler has been very responsive at correcting issues with the BSP in a timely fashion
- In most cases, isolating the issue was the difficulty.
 - compounded by the uncertainty of whether issues were caused by an application, or the OS/BSP
 - Certain issues only occurred sporadically
- Debugger limitations
 - VxWorks Workbench debugger has limited usage in tracking CPU exceptions
 - Grmon output can be cryptic
 - If a trap occurs outside of the currently selected core, it will be reported as an “undefined watchpoint”
 - Gaisler support was required in identifying and correcting BSP issues
- Additional Tools:
 - Quad-Core LEON4 useful in further isolating applications
 - Additional Serial Ports can be used to provide application-specific debug output ports.
VxWorks SMP for LEON

• BSP Conclusions
 – All confirmed issues have been corrected with support from Gaisler.
 ➢ Several BSP patches generated in response to our queries
 ➢ Some issues caused by configuration issues in our software

 – Early development encountered many stability issues
 ➢ Majority of issues involved usermode
 ➢ All issues have been resolved, or can no longer be reproduced.

 – VxWorks SMP support for the Leon is a new product
 ➢ Stability and reliability in our experience has increased substantially over the past year
 ➢ Further development and testing is required to verify the maturity of the system.
RTEMS AMP Experiences

• Started with existing single-core RTEMS configuration
 – Contains a set of applications configured for execution in 8MB SRAM

• Single OS image per core
 – For AMP, we cloned the original project and adjusted the memory map
 ➢ Switched to 128MB SDRAM configuration of GRMON
 ➢ Added RTEMS shared memory (SHM) region at start of RAM
 ➢ Memory map of second image modified to load at a higher address
 – Added RTEMS AMP configuration options
 ➢ Initialize shared memory for RTEMS IPC via message queues
 ➢ Assign Ethernet to core-0 image
 ➢ Assign distinct serial ports for each image

• Each core executes independent cFE instances
 – Shared message queues can be used to communicate between cores
 – APL Asynchronous Message Service (AMS) prototype used to demonstrate communication between cores as a proof of concept.
 – cFE images successfully executed, each running distinct application sets.
 ➢ SBN app can be used to send messages between cores.
 ➢ Due to time and scope constraints, we did not complete debugging this interface.
RTEMS AMP Summation

• Pros
 – Applications are fully isolated between cores in terms of CPU utilization
 – In the event of an OS or application failure, the other cores are not necessarily affected.
 – Reduced complexity in multi-core synchronization compared to SMP
 – Initial Setup can be more complex than for VxWorks SMP, but no issues were encountered due to OS or BSP bugs in our brief exploration

• Cons
 – AMP Loading process for development is more complex
 ➢ A Grmon startup script is used to automate the process.
 ➢ Each CPU image is individually loaded and its execution and stack points set prior to execution.
 – An application instance cannot utilize more than a single core.
 – Debug considerations discussed for SMP apply, but are mitigated by the fact that applications cannot float between cores.
Power Savings

• Multi-core systems offer power savings capabilities.
 – Power and performance can be dynamically scaled to mission phase
 ➢ i.e: Reduce number of active cores in cruise versus encounter

• To effectively disable a core in flight on an SMP system:
 – Task Affinity must be explicitly set on all tasks to exclude the disabled core(s) as applicable
 – A custom idle task may place its associated core into low-power mode
 ➢ Low-power ‘sleep’ is a function of the LEON processor core
 ➢ The core will resume normal operation upon receiving any interrupt.

• For an AMP system
 – Low-power mode can be enabled per-core using an idler, when applicable
 – Cores may be disabled at boot if no image is loaded
Questions?

• References:
 – http://gaisler.com
 – GSFC cFE and OSAL http://code.nasa.gov/project/core-flight-executive-cfe/