
© The Aerospace Corporation 2012

Dr. Christopher Landauer

Software Systems Analysis Department

The Aerospace Corporation

Computer Science Division / Software Engineering Subdivision

08 November 2012

Flight Systems are Cyber-Physical Systems

2

chris.landauer@aero.org

Summary

• We show how to model flight systems (software and hardware) as

cyber-physical systems, by combining appropriate modeling

paradigms: discrete interactions for software and other events,

continuous processes for movement and hardware, and story lines

for scenarios.

3

chris.landauer@aero.org

Outline

• Software-Intensive Embedded Systems

• The Real World

• What is Hard

• A New(ish) Approach: Com+Ode

– A New Hard Mathematical Problem

• Other Well-Known Modeling Mechanisms:

– AADL, DEVS, Modelica, and SysML

• What is missing in these approaches?

• Modeling Process Lessons Learned

• Conclusions and Recommendations

• Some References

4

chris.landauer@aero.org

Software-Intensive Embedded Systems

• Software is well-modeled and even well-defined by formal and

systematic mechanisms

– Event patterns

– Alternatives and contingencies

– Iterations and rendezvous

• Scenarios are stories of what happens that is not controlled by the

system

– They also define what the system is expected to do in response

• Embedded systems need context observation and interpretation to help

predict their environment

– Making internal choices and responding to external direction

– These systems need to be able to build their own models

5

chris.landauer@aero.org

The Real World

• Not well-modeled by any formal or systematic mechanisms

– No matter how good the mathematical foundation is (MAUDE, CSP, ...)

• Mostly smooth, occasional abrupt changes (``modes'')

– Things break and otherwise spin out of control

• The operational environment of any embedded system is

– Largely unpredictable and uncontrollable and mostly unknowable

– (``the slings and arrows of outrageous fortune'')

• Scenarios are stories of what happens that is not controlled by the

system, including

– Activities of other agents or actors

– Component failures and other errors

– Unexpected environmental phenomena

– Other nominal and off-nominal activities

6

chris.landauer@aero.org

What is Hard

• Combination of abstract software transition models with very concrete

hardware / environment models

– Software is about the sequencing (or partial ordering) of discrete events

• Concurrent and possibly distributed

• Behavior is generally assumed to be independent of platform

– Hardware / environment is about continuous or even smooth processes

• Evolving state of the system in an uncertain environment

– Concept of operations is about how the system will be used by its human and

other operators

• Scenarios illustrate various desires and expectations for the system

• There are almost always not enough of these

• These three aspects of system development generally use completely

different paradigms

– Many difficulties and errors in integrating them to predict system performance

7

chris.landauer@aero.org

A New(ish) Approach: Com+Ode

• Combination modeling method to reduce the difficulty and increase

the reliability of these modeling efforts

– Com is a formal notation for software modeling for simulation and

verification

– ODE is a collection of formal methods for solving differential equations

– Story interpreter (simulation engine)

• Integration among these model styles is explicit

– Interference spaces: physical, electromagnetic, resource contention

– Influence mappings from each one to the others

• Some matter more than others

8

chris.landauer@aero.org

Com

• Event-based programming

– Developed by the presenter in mid-1980’s (see references)

– Based on Hoare's CSP = Communicating Sequential Processes

– Altered for better separation of processes

• (Hoare also made this change for his CSP book)

– Concurrency and synchronization

• Hierarchical model definition

– Extended to allow time intervals and asynchronous interaction

• Mathematical foundation

• Simulation and verification from the same model

– Translation into C for simulation

– Translation into various temporal logics for verification

9

chris.landauer@aero.org

Ode

• Ordinary differential equations

– Movement

– Gradual changes

– Certain other temporal effects may matter

• State based instantaneous movement

– Smooth changes at various rates

• Singularities affect the way equations can be solved

– Special methods are needed for solving equations near singularities

• Different solver strategies depending on different properties of equations

– This is why we want explicit integration instead of implicit

• Global time may not be definable

– When the system is sufficiently distributed compared to the time resolution

– When propagation time becomes non-trivial compared to the rest of the

computations

10

chris.landauer@aero.org

A New Hard Mathematical Problem

• Real / discrete space of high and variable dimensionality

• Importance space has different and dynamic measure of significance

for each coordinate

– ``Design drivers’’ are an example

• Smooth movement into a region may change the equations or just

their importances

– Exploratory differential geometry provides some methods (simplicial

complexes)

• Software transitions may also change the space

– New sets of variables and constraints matter

• Singularity indications and warnings

– Singularity predictions

11

chris.landauer@aero.org

Other Modeling Mechanisms - AADL

 http://www.aadl.info

 https://wiki.sei.cmu.edu/aadl

• Predictable model-based engineering of performance-critical real-time and

embedded systems

• Text notation with graphics

– Defined in English with reference implementations

– Systematic but not mathematically formal

– There are also XML descriptions that formally define the syntax (not the

semantics)

– Highly extensible (annexes can specialize application domain)

• Developed by SAE specifically for manufacturing

– Large world-wide user community

• Component abstractions in three categories

– Application software

– Execution platform (hardware)

– Composite (system integration elements)

12

chris.landauer@aero.org

Other Modeling Mechanisms – DEVS

 http://www.acims.arizona.edu/

• Text notation with graphical display

– Defined in English, but with a formal mapping to discrete dynamic systems

– Continuous models are also possible

• Three basic objects derived from the real world system

– Model, simulator, experimental frame

• Hierarchical construction of models

• Basic model has

– Input and output ports, internal state variables and parameters

– Time variable defines time until next internal transition (can be 0 or infinity)

– Internal transition function defines state changes at transition time

– External transition function defines response rules to external inputs

• Internal state changes and a new wait time

• Geared towards separating simulation from model, but still fairly specific to

simulation

13

chris.landauer@aero.org

Other Modeling Mechanisms - Modelica

 http://www.modelica.org

 http://www.openmodelica.org

• Language for modeling of complex cyber-physical systems for simulation

and other analyses

• Graphical notation and text annotation

– Structure from graph; behavior from text

– Defined in English, but mapped into a differential-algebraic equational system,

with typed variables and explicit scope and volatility and conditional equations

• Hybrid discrete - continuous modeling

– Acausal (no implied order of computations)

– Components, interconnections

• Many tools exist for access to external languages

• Combined differential-algebraic equational systems may not be most

appropriate

– Local context defined by conditional equations vs global validity

14

chris.landauer@aero.org

Other Modeling Mechanisms - SysML

 http://www.omg.org/spec/SysML/

 http://omgsysml.org/

• Customized and extended modification of UML 2.0 for system engineering

• Graphical notation with annotations

– Defined in English with reference implementations

– Systematic but not mathematically formal

• Four aspects

– Structure = Parts and connections

• Hierarchy of physical or logical components and environment functionality

– Behavior (discrete only) defined by interaction, state machines, activity / function

– Requirement relationships include hierarchies, refinements, derivation,

satisfaction, verification

– Parametrics are constraints on system parameter values

• Ports include discrete data ports and continuous flow ports

– Rate restrictions and probabilities

15

chris.landauer@aero.org

What is missing in these approaches?

• All allow internal hierarchical view of an embedded system

– Structure, interfaces, local state, and reactions to external interactions

• Few expect an external view of system in environment

– All can model some of the relevant effects of the environment

– None can model all of the relevant effects of the environment

• Few clearly separate the model definition from its interpretation by a

simulation or other analysis tool

– Few have formal definitions that support proofs of behavior

– Few (or none) have much tool support for proofs of local behaviors in context

– Systems operate in a tiny subspace of the vast possibilities defined by their

parameters

– Proofs of constraints are useful in limiting searches and monitoring requirements

(and also for simplifying descriptions and decisions)

• Few (or no) integration processes exist to map one approach into another,

or to use a model in a different context

16

chris.landauer@aero.org

Modeling Process Lessons Learned

• Hierarchical modeling is extremely useful

• Early modeling can discover unexpected scenarios or definition gaps

• Model changes should always be mapped to all existing model

resolutions

– Even back-mapping to older models that were used for analyses

– This is a kind of regression model testing

• Choosing a level of resolution adequate for the analysis at hand

– Usually a bit more than that required to state the analysis problem and its likely

answers (sometimes a lot more)

• Validating the relationships among different resolution levels

• The formal foundations of com+ode, DEVS, and Modelica allow some

properties to be proved

– Then they can be used in the simulation programs and other analyses

• Visualizations are important, but should not drive the computation

– There are forces and futures that we cannot see in the images

17

chris.landauer@aero.org

Conclusions and Recommendations

• Commonalities and differences in these notations should be better

described

– There may also be other notations used in other domains

• There should be integration mechanisms to bridge their different

notations and semantics

– Especially the basic computational models

– Integration commonality proofs will remove several incompatibility barriers

• Common model interchange formats need to be defined based on

physical commonalities

– Since they all purport to model physical systems

– Also mapping of software behaviors as discrete dynamical systems (or some

other mathematical objects)

• General modeling notations are not as useful because they are

cumbersome

– Special purpose notations, context conditions, and explicit integration methods

18

chris.landauer@aero.org

Some References

• C. A. R. Hoare, Communicating Sequential Processes, Prentice-

Hall (1985)

• Leslie Lamport, ``Time, Clocks, and the Ordering of Events in a

Distributed System'', Comm. ACM Vol.21 No.7, pp. 558-565 (July

1978)

• Christopher Landauer, ``Communication Network Simulation Tools'',

Part 3, pp. 995-1001 in Proceedings of the 16th Annual Pittsburgh

Conference on Modeling and Simulation, April 1985, Pittsburgh,

Instrument Society of America (Fall 1985)

• Christopher Landauer, ``Network and Protocol Modeling Tools'', pp.

87-93 in Proceedings of the 1984 IEEE / NBS Computer

Networking Symposium, December 1984, NIST, Gaithersburg,

Maryland (December 1984)

19

chris.landauer@aero.org

Some More References

• Christopher Landauer, ``Performance Modeling of Protocols'',

Paper 16.2, vol. 2, pp. 219-221 in Proceedings of MILCOM'84: The

1984 IEEE Military Communications Conference, October 1984,

Los Angeles (October 1984)

• Christopher Landauer, Kirstie L. Bellman, ``Integration Systems and

Interaction Spaces'', pp. 161-178 in Proceedings of FroCoS'96: The

First International Workshop on Frontiers of Combining Systems,

26-29 March 1996, Munich, Germany (March 1996)

• J. Stoer, R. Bulirsch, Introduction to Numerical Analysis, 2nd ed.,

Translated by R. Bartels, W. Gautschi, C. Witzgall, Springer (1993)

© The Aerospace Corporation 2012

Questions?

