Coping with flexibility requirements in ASTRO APS star tracker software

Ingolf Steinbach, FSW 2013, Pasadena CA, 2013-12-10
Jena-Optronik GmbH

Jena-Optronik focuses on space applications with operational, commercial and scientific background:

• **Attitude and Orbit Control Systems (AOCS) sensors:**
 - Star Sensors
 - Rendezvous and Docking Sensors
 - Sun Sensors

• **Optical space instruments for Earth observation:**
 - Multi-spectral imager JSS 56
 - Imaging Radiometer METimage
 - Important contributions within Sentinel-2, Sentinel-3 & Sentinel-4
 - Multi-spectral filter assemblies

• **Software and data processing**

• **Awarded excellent products:**
 - Boeing “Supplier of the year 2006”
 - Astrium “Master supplier 2007”
 - Mitsubishi Electric Corporation “Certificate of Appreciation” 2009
 - Mitsubishi Electric Corporation “Best Supplier Award” 2011

• Jena-Optronik is EN/AS 9100 certified

Jena-Optronik is EN/AS 9100 certified

The company.

This presentation does not contain any ITAR restricted material.
German Optical Valley: Tradition and Future
Highlights of ASTRO APS

- Active Pixel Sensor (APS) technology
- Lifetime > 18 years
- Radiation design for 25 years GEO environment
- Space qualified CMOS detectors
- Full performance with moon in the field of view
- Very robust against solar flare environment and false star objects
- Attitude accuracy [LSFE, HSFE, TE]:
 - < 1 arcsec [1σ] xy-axes
 - < 8 arcsec [1σ] z-axis
- Mass: < 2kg (incl. straylight baffle)
- In space since July 2013 (on board Alphasat)
- … and performing excellently!
Configuration options with major impact on software

Operational interface:
- MIL-STD-1553B
 - ESA PUS (ECSS, CCSDS Source Packets based)
 - Low Bandwidth Jena-Optronik (“JOP”) Protocol
- RS422 based UART
- SpaceWire
- SCDI (Synchronous Serial Command & Data I/F)

Detector:
- STAR1000
- HAS2

Operating System:
- RTEMS (for real hardware)
- Solaris / Windows (for simulators)
Typical supplier challenge

- Customers:
 - “Star tracker must integrate smoothly into on-board data handling”
 - Varying bandwidth limitations
 - Manifold operating scenarios (GEO vs LEO, agility, …)

- Product manager:
 - Uniform product line desired
 - Minimum impact of options on the characteristics

- Both:
 - Qualification status to be kept as much as possible
First thought: “Clone and own”

- Obvious benefits:
 - Quick
 - Customer requirements can easily be integrated
 - No impact on other projects to be considered

- But…
 - No other projects are considered
 - Projects will slowly diverge
 - Heritage is obscured
 - No easy benefit from improvements in other projects
 - Potential configuration nightmare
Upon second thought (Jena-Optronik approach): Modularization

- Use same core parts (e.g. algorithms) in all configurations

- Communication Protocol Stack according to OSI
 - Protocol layers exchangeable
 - Each configuration can use a different selection

- Low-level drivers with abstract interface for hardware parts (HAL)
 - Same abstract interface can be implemented by different drivers

- Operating System Abstraction Layer (OSAL)
 - Implementation of abstract concepts for different operating systems
Application Layer

- Implements high-level star tracker concepts (aka “services”)
 - Initial acquisition
 - Attitude tracking
 - Health monitoring
 - ...
- Includes definition and purpose of parameters
- Identical in all configurations
- Described in a generic user manual
Presentation Layer

- Defines data structures, for instance
 - Telemetry data blocks
 - Telecommand parameter structures
 - Selected internal data structures

- Includes encoding of parameters

- Up to now, identical baseline in all configurations
- Can be augmented (e.g. PUS requires additional services)

- Described in “measurement and command list” (part of the Software ICD)
Session Layer

• Implements
 – Packeting/depacketing of TM/TC data structures
 – Sequence counters
 – Integrity checks (CRC based)
 – Completeness checks
 – …

• Two alternatives:
 – Low bandwidth Jena-Optronik (“JOP”) session layer
 • Suitable for all communication media
 – ESA PUS (using CCSDS TM/TC source packets)
 • Currently for MIL-STD-1553B configurations
• Described in dedicated part of the Software ICD
Transport Layer

• Implements
 – Serialization / fragmentation (if necessary) of telemetry
 – De-serialization / reconstruction of telecommands
 – Handshaking
 – ...

• Typically: implementation(s) specific for each media type
• For MIL-STD-1553B, two alternatives:
 – Data block transfer (serial, ECSS-E-ST-50-13C)
 – Jena-Optronik (random access, low bandwidth)
• Described in dedicated part of the Software ICD
Network / Data link / Physical Layer

- Functionality partially provided by dedicated controller hardware / associated electronics
- Augmented by low-level software drivers
- Drivers located in Hardware Abstraction Layer (HAL)
- HAL provides abstract interface to upper layers
- When exchanging controllers (for same media type):
 - Abstract interface *not* impacted
 - New implementation of abstract interface
 - Transport (and upper) layers *remain unchanged*
Re-use Example

Re-use in 2 Sample Configurations (Lines of Code)

MIL-STD-1553B

UART/RS422

- HAL-OpIF
- Transport
- OSAL
- HAL
- JOP Session
- Presentation
- Core

re-used w/o modification
Benefits for validation

• Cleaner design
• Stubs for each layer available for development & testing
• Tests implemented e.g. for
 – Session layer only (CPU emulator)
 – Transport layer only (CPU emulator)
 – Low-level driver (extended emulator and/or real hardware)
• Most of the protocol stack testable w/o communication hardware
• Easy error injection at different layers
• Coverage of 100% MC/DC “more than” achieved
• Simulators for the star tracker:
 – Processing algorithms only
 – Processing + (part of the) protocol stack
Benefits for the user

- Evident qualification status

- One user manual (independent from communication interface)

- Interface Control Document with separate sections for
 - Measurement and command list
 - Session layer
 - Transportation layer
 - Project specific information (if necessary)

- Supports layered approach at the user’s site (but does not enforce it)

- Easy identification of required changes when migrating from one medium to a different one
Evaluation of the modularized approach

Drawbacks:
• More design effort needed
• Refactoring necessary when introduced in existing code
• Short-term: higher costs

Benefits:
• Mid-/long-term: less costs
• Clean design
• Consistent behavior of the star tracker between configurations
• Ideal testing/simulation capabilities
• Small delta qualification when porting to different protocol stacks
• High flexibility
Questions?

Contact Information:

Ingolf Steinbach
c/o Jena-Optronik GmbH
Pruessingstrasse 41
07745 Jena
Germany
Phone: +49 3641 200-216
ingolf.steinbach@jena-optronik.de
http://www.jena-optronik.de/