
PRE-DECISIONAL DRAFT; For planning and discussion purposes only 1
12/6/2013

Mars Science Laboratory

Instrument Software Framework (ISF)
A Small Scale Component Framework for Space

Timothy Canham, Jet Propulsion Laboratory
Garth Watney, Jet Propulsion Laboratory
Leonard Reder, Jet Propulsion Laboratory

12/11/2013

Copyright 2013 California Institute of Technology. Government sponsorship acknowledged.

PRE-DECISIONAL DRAFT; For planning and discussion purposes only 2

CALIFORNIA INSTITUTE OF TECHNOLOGY

Background

• ISF was developed as part of a technology task at NASA JPL.
– Explore new flight hardware
– Explore new software approaches

– Targeted at smaller projects like instruments, Cubesats, and smaller Smallsats
– Sparser processor resources (e.g. 2MB memory, 128K program space)

• TI MSP430, ARM-M*, LEON3

– Farms of smaller interconnected processors

• Goals were to show:
Goal Explanation

Reusability Frameworks and adaptations readily reusable

Modularity Decoupled and easy to reassemble

Testability Easily tested in isolation

Adaptability Should be adaptable to new contexts and bridge to inherited

Portability Should be portable to new architectures and platforms

Usability Should be easily understood and used by customers

Configurability Facilities in the architecture should be scalable and configurable

Performance Architecture should perform well in resource constrained
contexts. Should be very compact.

Copyright 2013 California Institute of Technology. Government sponsorship acknowledged.

PRE-DECISIONAL DRAFT; For planning and discussion purposes only 3

CALIFORNIA INSTITUTE OF TECHNOLOGY

ISF: A Component Architecture

• The ISF Component Architecture is a design pattern based on an
architectural concept combined with an architectural framework.

• Not just the concepts, but framework classes and tools are provided
for the developer/adapter.

• Implies patterns of usages as well as constraints on usage.
• Centered around the concept of “components” and “ports”
• Leverages code generation for framework classes

1 2

3
1 2

3

1 2

3

Copyright 2013 California Institute of Technology. Government sponsorship acknowledged.

PRE-DECISIONAL DRAFT; For planning and discussion purposes only 4

CALIFORNIA INSTITUTE OF TECHNOLOGY

Characteristics of Components

• Encapsulates behavior
• Components are not aware of

other components
• Localized to one compute

context
• Interfaces are via strongly

typed ports
– Ports are formally specified

interfaces
– No direct calls to other

components
• Consists of three kinds:

Passive, Queued and Active
– Explanation coming

Component

1
2

3

Port 1 Port 2

Copyright 2013 California Institute of Technology. Government sponsorship acknowledged.

PRE-DECISIONAL DRAFT; For planning and discussion purposes only 5

CALIFORNIA INSTITUTE OF TECHNOLOGY

Characteristics of Ports

• Encapsulates typed interfaces in the architecture.
• Point of interconnection in the architecture.
• Ports are directional; there are input and output ports
• Ports can connect to 3 things:

– Another typed port
• Call is made to method on attached port

– A component
• Incoming port calls call component provided callback

– A serialized port
• Port serializes call and passes to generic serialized

interface (more to come)

• All types in the interface call must be serializable. Built-
in types are supported; user types must derive from
Serializable and implement serialization methods.

• Ports can have return values, but that limits use
– Only with synchronous/locked ports
– No serialization

• Pointers/references allowed for performance reasons

Component

1
2

3

serialize()

Copyright 2013 California Institute of Technology. Government sponsorship acknowledged.

PRE-DECISIONAL DRAFT; For planning and discussion purposes only 6

CALIFORNIA INSTITUTE OF TECHNOLOGY

A Component Topology

Component 1

1
2

3

Port 1 Port 2

Component 2

1
2

3

Port 1 Port 2

Component 3

1
2

3

Port 1 Port 2

• Components are instantiated at
run time

• They are then connected via ports
• There are no symbolic

dependencies between
components, just dependencies
on port interface types

• Alternate versions, such as
simulation, can be substituted

Copyright 2013 California Institute of Technology. Government sponsorship acknowledged.

PRE-DECISIONAL DRAFT; For planning and discussion purposes only 7

CALIFORNIA INSTITUTE OF TECHNOLOGY

Component Type Hierarchy

Framework ClassCode Generated ClassDeveloper Written Class

Fw::ComponentBaseSomeComponentBase

Fw::QueuedComponentBase

Fw::ActiveComponentBase

AnotherComponentBase

ThirdComponentBase

SomeComponentImpl

AnotherComponentImpl

ThirdComponentImpl

Copyright 2013 California Institute of Technology. Government sponsorship acknowledged.

PRE-DECISIONAL DRAFT; For planning and discussion purposes only 8

CALIFORNIA INSTITUTE OF TECHNOLOGY

Component Types

• Passive Component
– No thread
– Port calls are made directly to user derived class

• Queued Component
– No thread
– A queue is instantiated, and port calls are serialized and placed on

queue.
– Derived class makes call to base class functions to dispatch calls

• Thread of execution provided by caller to this component

• Active Component
– Component has thread of execution as well as queue
– Thread dispatches calls from queue as it receives cycles

• In all cases, calls to output port are on thread that invokes derived
class functions

Copyright 2013 California Institute of Technology. Government sponsorship acknowledged.

PRE-DECISIONAL DRAFT; For planning and discussion purposes only 9

CALIFORNIA INSTITUTE OF TECHNOLOGY

Port Characteristics

• The way incoming port calls are
handled is configured by the code
generator.

• Input ports can have three
characteristics:

– Synchronous – port calls directly invoke
derived functions without passing through
thread

– Guarded – port calls directly invoke derived
functions, but only after getting a lock shared
by all guarded ports in component

– Asynchronous – port calls are invoked on
thread of active components

• Output ports are called synchronously
from implementer’s functions

• Serialized ports can accept serialized
data instead of typed calls.

– Any port can connect to a serialized port
– When the connection is detected, the typed

port serializes that data prior to invoking port
– Serialized port doesn’t need to know anything

about type of calling port
– Enables a whole class of generic transport

and storage classes that increase the
reusability of components

Code Generated Base Class
func1()

virtual func1()=0

Developer Written Implementation Class

func1() {
…

func4()
}

Task
Asynchronous

func2()

func2() {…}

Synchronous

func3()

func3() {…}

Guarded

func4()

Copyright 2013 California Institute of Technology. Government sponsorship acknowledged.

PRE-DECISIONAL DRAFT; For planning and discussion purposes only 10

CALIFORNIA INSTITUTE OF TECHNOLOGY

Serialization

• Serialization is a key concept in the framework
• Serialized forms of interface calls are used for message queues and to

move across memory spaces (more to come).
• Data storage in the generic components can be in the form of

serialized values
• Provides a uniform way of passing and storing data
• Allows flexibility in the kinds of data stored.

– Logging, telemetry and parameters can have arbitrary types stored
without having to know anything about the type

• User types can be serialized by deriving from Serializable base type
and implementing serialization functions.
– Code generation for simple structures

• Serialized into Serialization buffers which are passed around
– Differing buffer sizes and types depending on context

Copyright 2013 California Institute of Technology. Government sponsorship acknowledged.

PRE-DECISIONAL DRAFT; For planning and discussion purposes only 11

CALIFORNIA INSTITUTE OF TECHNOLOGY

Component Pattern - Rate Group

• Rate group is a
container of run()
ports.

• Has an ordered list
for run order

• Since is a list of run
ports, doesn’t know
(or care) which
destinations are in
active components
or not

• Rate Group is an
active component

Rate
Group

run()

run()
active

run()

…
.

run()

run()

Schedulable Connector

Copyright 2013 California Institute of Technology. Government sponsorship acknowledged.

PRE-DECISIONAL DRAFT; For planning and discussion purposes only 12

CALIFORNIA INSTITUTE OF TECHNOLOGY

Simulation

• Simulation components or components that bridge to simulation
can be substituted for components at whatever level makes
sense.

Behavior
Component

Hardware
Manager

Component

Hardware
Driver

Component

Hardware
Manager

Simulation

Hardware
Driver

Simulation

Copyright 2013 California Institute of Technology. Government sponsorship acknowledged.

PRE-DECISIONAL DRAFT; For planning and discussion purposes only 13

CALIFORNIA INSTITUTE OF TECHNOLOGY

Multi-node

• Hub pattern
– Hub is a component with multiple serialization input and output ports
– Typed ports on calling components are connected to serialized ports (see earlier

slides)
– Each hub instance is responsible for connecting to a remote node
– Input port calls are repeated to corresponding output ports on remote hub
– Single point of connection to remote node, so central point of configuration for

transport.

Node 1

Producer
Component1

Transport (Socket, ARINC Channel, UART, IPC)

Node 2

Consumer
Component1

Hub Hub

Consumer
Component2

Producer
Component2

Copyright 2013 California Institute of Technology. Government sponsorship acknowledged.

PRE-DECISIONAL DRAFT; For planning and discussion purposes only 14

CALIFORNIA INSTITUTE OF TECHNOLOGY

Small-scale Deployment

• INSPIRE, a Cubesat mission, is
flying a TI MSP430F2618
microcontroller

– 116K flash (for code), 8K RAM

• We ported ISF to a experimenter’s
board similar to the flight processor.

• We implemented a simple set of
components that use the ISF as well
as the QF (Quantum Framework)

Software Component Memory Size Description

ISF Framework 2.9K Flash Includes base classes and types

ISF Adaptations 7K Flash Includes auto-coded and user code for implementation.

Component Topology 1K heap Components are dynamically allocated at startup

Copyright 2013 California Institute of Technology. Government sponsorship acknowledged.

PRE-DECISIONAL DRAFT; For planning and discussion purposes only 15

CALIFORNIA INSTITUTE OF TECHNOLOGY

UML Modeling and Generation

• Research task at JPL wrote UML plug-ins to generate XML for
components

• Modeled a JPL mission and demonstrated model-to-code process
• See other talk for details

class App7 App7[]

«Arinc653Partition»
part1 : Partition

ctrl : Controller

«async_input»
centroidIn : CentroidMsg

«async_input»
AttIn : ARSData rawFsmOut : FSMData

GetParam : ParamNameType

SetParam : ParamDataType

ParamOut : ParamDataType

«Arinc653Partition»
part3 : Partition

ARS : AttitudeRateSensor
AttOut_0 : ARSData

«async_input»

rawAttIn : ARSData

AttOut_1 : ARSData

«sync_input»

CmdIn : ARSCmdType

CMD : Commander

ModeCmdOut : ControllerCmdType

GetParamOut : ParamNameType

SetParamOut : ParamDataType«async_input»

rawCmdIn : GeneralCmdType

TLM : Telemetry

rawTlmOut : Serial

ARSTlmIn : ARSData

FSMTlmIn : FSMData

ParamTlmIn : ParamDataType

StateIn : StateMsgType

Diagram name App7

Author watney

Creation date 6/7/13 8:44 AM

Modification date 10/4/13 8:14 PM

«Arinc653Partition»
part2 : Partition

FSM : FastSteeringMirror

rawFsmIn : FSMData

FsmOut : FSMData

PMM : PayloadModeMgr

CmdIn : ControllerCmdType

CameraCmdOut : CameraCmdType

ARSCmdOut : ARSCmdType

stateOut : StateMsgType

Av : Avionics
rawCentroidOut : Serial

rawAttOut : Serial

rawCmdOut : Serial

«sync_input»
rawTlmIn : Serial

«sync_input»
testPort1 : GeneralCmdType

«sync_input»
testPort2 : CentroidMsg

«sync_input»

testPort3 : ARSData

Cam1 : Camera

centroidOut : CentroidMsg

rawCentroidIn : CentroidMsg

«sync_input»

CmdIn : CameraCmdType

«allocate»

«allocate»

«allocate»

«allocate»

«allocate»

«allocate»

«allocate»
«allocate»

Copyright 2013 California Institute of Technology. Government sponsorship acknowledged.

PRE-DECISIONAL DRAFT; For planning and discussion purposes only 16

CALIFORNIA INSTITUTE OF TECHNOLOGY

Status

• Rev 1.0 of the architecture is complete
• Rev 0.5 is being flown on RapidScat, an ISS radar experiment
• Has been ported to:

– Linux, VxWorks, ARINC 653, No OS
– PPC, Leon3, x86, ARM (A15/A7), MSP430

• Hubs demonstrated on:
– Sockets
– ARINC 653 Channels
– High-speed flight interface

• In proposals for other projects at JPL
• Further work to do in “robustifying” the code generator for illegal

combinations, etc.
• Add notion of commanding to framework rather than as an adaptation

Copyright 2013 California Institute of Technology. Government sponsorship acknowledged.

PRE-DECISIONAL DRAFT; For planning and discussion purposes only 17

CALIFORNIA INSTITUTE OF TECHNOLOGY

Backup Slides

Copyright 2013 California Institute of Technology. Government sponsorship acknowledged.

PRE-DECISIONAL DRAFT; For planning and discussion purposes only 18

CALIFORNIA INSTITUTE OF TECHNOLOGY

Input Port Characteristics

• The way incoming port calls are handled is
configured by the code generator.

• Input ports can have three characteristics:
– Synchronous – port calls directly invoke derived

functions without passing through thread

– Guarded – port calls directly invoke derived
functions, but only after getting a lock shared by
all guarded ports in component

– Asynchronous – port calls are invoked on thread
of active components

• A passive component can have synchronous
and guarded ports, but no asynchronous ports
since there is no queue. Calls execute on the
thread of the calling component.

• A queued component can have all three port
types, but it needs at least one synchronous
or guarded port to unload the queue (see later
slides), and at least one asynchronous port for
the queue to make sense.

• An active component can have all three
varieties, but needs at least one
asynchronous port for the queue to make
sense.

• Designer needs to be aware of how all the
different call kinds interact

Code Generated Base Class
func1()

virtual func1()=0

Developer Written Implementation Class

func1() {…}

Task
Asynchronous

func2()

func2() {…}

Synchronous

func3()

func3() {…}

Guarded

Copyright 2013 California Institute of Technology. Government sponsorship acknowledged.

PRE-DECISIONAL DRAFT; For planning and discussion purposes only 19

CALIFORNIA INSTITUTE OF TECHNOLOGY

Serialization

• Serialization is a key concept in the framework
• Serialized forms of interface calls are used for message queues and to

move across memory spaces (more to come).
• Data storage in the generic components can be in the form of

serialized values
• Provides a uniform way of passing and storing data
• Allows flexibility in the kinds of data stored.

– Logging, telemetry and parameters can have arbitrary types stored
without having to know anything about the type

• User types can be serialized by deriving from Serializable base type
and implementing serialization functions.
– Code generation for simple structures

• Serialized into Serialization buffers which are passed around
– Differing buffer sizes and types depending on context

Copyright 2013 California Institute of Technology. Government sponsorship acknowledged.

PRE-DECISIONAL DRAFT; For planning and discussion purposes only 20

CALIFORNIA INSTITUTE OF TECHNOLOGY

Serialization Ports

• A special, non-type specific port interface.
• Takes as input a serialized buffer when it

is an input port, and outputs a serialized
buffer when it is an output port.

• Can be connected to *any* typed port.
– For input port, calling port detects

connection and serializes call
– For output port, serialized port calls

interface on typed port that deserializes call.
– Not supported for ports with return types

• Useful for generic storage and
communication components that don’t
need to know type

– Makes them much more reusable
– e.g. Hubs (see later slides), telemetry,

parameters, data products

Comp1

Comp2

Typed port

Serialized port

Comp3

Serialized port

Typed port

Copyright 2013 California Institute of Technology. Government sponsorship acknowledged.

PRE-DECISIONAL DRAFT; For planning and discussion purposes only 21

CALIFORNIA INSTITUTE OF TECHNOLOGY

STABLE Instrument PDR

Avionics

Copyright 2013 California Institute of Technology. Government sponsorship acknowledged.

PRE-DECISIONAL DRAFT; For planning and discussion purposes only 22

CALIFORNIA INSTITUTE OF TECHNOLOGY

Stable Demo ARINC653 Emulation
(three partition) Deployment

Copyright 2013 California Institute of Technology. Government sponsorship acknowledged.

PRE-DECISIONAL DRAFT; For planning and discussion purposes only 23

CALIFORNIA INSTITUTE OF TECHNOLOGY

TI Microcontroller ISF Component Adaptation

Rate
Group

Joystick
Component

Blinker State
Machine

Component

LED
Component

run()

run()

new_position()

set()

Log
Component

• The rate group executes at ~2Hz
– Calls the joystick and blinker state machine components
– Blinks a second LED as a heartbeat

• ISR (Interrupt Service Routine) executes asynchronously when joystick is pushed.
Position is reported to joystick component.

• When rate group executes joystick component, it checks for change in position. If it
detects one, it reports it to the state machine component

• Depending on the position, the state machine either turns off LED, turns on LED, or
blinks LED. The QF state machine on the next slide is implemented in this component.

ISR

Copyright 2013 California Institute of Technology. Government sponsorship acknowledged.

