WHAT’S THE FUZZ
ABOUT TESTING?

Gerard Holzmann

gh@jpl.nasa.gov

atory
/e Labore 9
nasai 1Pk ble software

“Whatever can happen will happen
if we make trials enough.”

QUE STIONS Augustus De Morgan (1856)

1. How good is Unit Testing with ‘ J—
100% MC/DC Coverage? :

2. Is Fuzz testing (Randomized s #
Testing) better? T 5

3. What if we use Testing with o ik
Perfect Recall? Aol

4. How can we exploit Parallelism? TAR _"' ",

12/16/2014

THREE SMALL EXAMPLES

1: CONDITIONALS

void
test main(void)
{
fct (0,0) ;
fct(1,1);
}

int *p;
void
fct(int x, int y)
{
if (x)
{ P = &x;
}
if (y)
{ *p=y;
}

2: LOOPS

void
fct(int x, int y)
{ int i, al[4]:;

for (i = 0; i < x+y; i++)

{ al[i]l = i;

}

this test achieves 100% MC/DC
coverage, yet it misses the bug
that is revealed with another test:
foo(0,1)
it covers just 50% of the execution
paths in the control-flow graph

void
test _main(void)
{
fect(1,1);
}

this test achieves 100% MC/DC
coverage, yet it misses the array
indexing bug that is revealed with,
for instance, foo(1,3)

it covers just 1 of 231 theoretically
possible execution paths

12/16/2014

e

©

3: THREADS

So maybe MC/DC coverage is not the
best metric to aim for.

Is Random Test Selection (Fuzz
Testing) better?

int X, y, r;
int *p, *q, *z;
int **a;

thread 1() // initialize
{

P = &x;
q = &y,
zZ = &r;

}

12/16/2014

. \
just 1 of 1,680 paths

will achieve 100%

thread 2() // swap *p and *q| |thread 3() // access z via a and p
{ {

r = *p; a = &p;

*p = *q; *a = z;

*q =r; **xg = 12;
} }

» -
A -

AN EXAMPLE |8z S

- 83 nodes are reachable ‘ | e

from the node labeled S1 ,

- How many random tests VI e
would we have to do to be . T e

sure that all 83 reachable ||
nodes are visited at least W BRI A

once?

a sample graph with 100
nodes and 200 edges

ot

—-
&

MC/DC coverage

e

12/16/2014

N RANDOM TESTS OF 500 STEPS
STATES VISITED VS # UNIQUE STATES

nr of visited unique percent time Cuttudutive Coverage of Random Test Rlues
tests states states coverage __,a’//A'
10 70 5 6% 1 second /:
100 439 15 18% 3 seconds
1,000 8,804 60 72% 1 minute
10,000 79,582 75 90% 6 minutes o T -

20,000 166,066 81 97% 12 minutes /

30,000 243,978 82 99% 17 minutes

100,000 834,707 83 100% 52 minutes

O L ST -

(the x-axis is a logscale)

THE SAME TEST FOR A GRAPH
OF 1000 NODES, 781
REACHABLE

I

U b -

nr of visited unique percent time
tests states states coverage (sec)
10 153 68 9% 1
100 1,340 291 37% 6
1,000 14,338 631 81% 124
10,000 139,692 754 96% 640
100,000 1,408,469 775 99% 93120

random test is unbiased, but does increasing
amounts of duplicate work as it progresses,
making it hard to push coverage to 100%

—— nr of random tests

WHAT IF YOU COULD REMEMBER
WHERE YOU’VE BEEN: WITH DFS OR BFS

100 nodes

1000 nodes

nr of visited unique percent

tests states states coverage
1 83 83 100%

nr of visited unique percent

tests states states coverage
1 781 781 100%

a breadth-first search (BFS) with
Perfect Recall in either graph
visits all reachable nodes and

explores all execution paths

without duplication in seconds

DOES THE RECALL HAVE TO BE

PERFECT?

states (for perfect recall) takes
too much memory?

= That’s Okay: Recall does not have
to be completely Perfect: it is only
meant to reduce the amount of
duplicate work

= It often suffices to store just a
hash-signature (or just a few bits
using a fixed size Bloom filter)

Hash

= What if storing all reachable

e postive

12/16/2014

12/16/2014

CAN IT BE FAST TOO?

= For large problems, a
full DFS or BFS search
could require excessive
amounts of time

= But, we can parallelize
the tests if we can split
up the search space,
using ... randomization
= leading to a technique
for Swarm Testing

method:

(1) use N parallel search engines (hundreds, thousands)
(2) define asmallmemory bound M for each search

(3) randomize the DFS within each search engine

After 5 hours of RANDOM TESTING

AN EXPERIMENT

NVEFS UNIT TEST SUITE — ||

‘ 398M states, 50K paths ‘

[Nz stecs
| A aahaTaT,

‘ measured fanout of stat*es

The arget Statement Coverage (%)
for MSL was 95-100%

[STTR S

After 5 hours of BFS SEARCH (TWR)

tE e v.te W 00

300 X R L)

50 00

[_vl= ¢

02 S0 n ‘ 745M states, >>50M paths ‘|
JUNEEE D B R D 0 0 0 B R R
[

40 00 ot A

000 12000

000 measured fanout of stat
1000
<] -4 . 1 R NLET TR 1w

o) !) Vo o bsesoamnt

Despite ~98% statement coverage, the
Unit Tests explored 3 orders of

We measured the number of unique system states

reached in all the above NVFS unit tests combined as
35,796 unique states (plus 1,175 duplicates)
and an estimated number of 100 distinct execution paths

magnitude fewer states than either
Random or TWR.

Testing with Recall (TWR) performed
best.

http://www.geocities.com/xiv_skull/xiv_skull.gif

12/16/2014

SO WHAT IS THE FUZZ?

Recall the application must be instrument-
ed so its state can be captured and
remembered

= There’s one downside: to use Testing with ') .J

= But if you do this you can:
= dramatically increase test coverage

= and, you can also perform much stronger
checks, up to full linear temporal logic
model checking of source code Spin

THANK YOU

"A random element is rather useful
when we are searching for a solution of
some problem.“

AM. Turing, "Computing machinery and intelligence," Oxford University Press,
MIND (the Journal of the Mind Association), Vol. LIX, no. 236, pp. 433-60,
(1950).

o

-

12/16/2014

MC/DC TESTING

Modified condition/decision coverage — Every point of entry and exit in the program has
been invoked at least once, every condition in a decision in the program has taken all
possible outcomes at least once, every decision in the program has taken all possible
outcomes at least once._ and each condition in a decision has been shown to independently
affect that decision's outcome. A condition 1s shown to independently affect a decision’s
outcome by: (1) varying just that condition while holding fixed all other possible
conditions, or (2) varying just that condition while holding fixed all other possible
conditions that could affect the outcome.

