
12/16/2014

1

Gerard Holzmann

gh@jpl.nasa.gov

1. How good is Unit Testing with

100% MC/DC Coverage?

2. Is Fuzz testing (Randomized

Testing) better?

3. What if we use Testing with

Perfect Recall?

4. How can we exploit Parallelism?

“Whatever can happen will happen

if we make trials enough.”

Augustus De Morgan (1866)

2

12/16/2014

2

int *p;

void

fct(int x, int y)

{

 if (x)

 { p = &x;

 }

 if (y)

 { *p = y;

 }

}

void

test_main(void)

{

 fct(0,0);

 fct(1,1);

}

this test achieves 100% MC/DC

coverage, yet it misses the bug

that is revealed with another test:

foo(0,1)

it covers just 50% of the execution

paths in the control-flow graph

3

void

fct(int x, int y)

{ int i, a[4];

 for (i = 0; i < x+y; i++)

 { a[i] = i;

 }

}

void

test_main(void)

{

 fct(1,1);

}

this test achieves 100% MC/DC

coverage, yet it misses the array

indexing bug that is revealed with,

for instance, foo(1,3)

it covers just 1 of 2
31

 theoretically

possible execution paths

4

12/16/2014

3

just 1 of 1,680 paths

will achieve 100%

MC/DC coverage

int x, y, r;

int *p, *q, *z;

int **a;

thread_1() // initialize

{

 p = &x;

 q = &y;

 z = &r;

}

thread_2() // swap *p and *q

{

 r = *p;

 *p = *q;

 *q = r;

}

thread_3() // access z via a and p

{

 a = &p;

 *a = z;

 **a = 12;

}

So maybe MC/DC coverage is not the

best metric to aim for.

Is Random Test Selection (Fuzz

Testing) better?

5

 83 nodes are reachable

from the node labeled S1

 How many random tests

would we have to do to be

sure that all 83 reachable

nodes are visited at least

once?

a sample graph with 100

nodes and 200 edges

6

12/16/2014

4

 nr of visited unique percent time

 tests states states coverage

 10 70 5 6% 1 second

 100 439 15 18% 3 seconds

 1,000 8,804 60 72% 1 minute

 10,000 79,582 75 90% 6 minutes

 20,000 166,066 81 97% 12 minutes

 30,000 243,978 82 99% 17 minutes

 100,000 834,707 83 100% 52 minutes

(the x-axis is a logscale)

7

 nr of visited unique percent time

 tests states states coverage (sec)

 10 153 68 9% 1

 100 1,340 291 37% 6

 1,000 14,338 631 81% 124

 10,000 139,692 754 96% 640

 100,000 1,408,469 775 99% 93120

nr of random tests

random test is unbiased, but does increasing

amounts of duplicate work as it progresses,

making it hard to push coverage to 100%

8

12/16/2014

5

a breadth-first search (BFS) with

Perfect Recall in either graph

visits all reachable nodes and

explores all execution paths

without duplication in seconds

nr of visited unique percent

tests states states coverage

 1 83 83 100%

nr of visited unique percent

tests states states coverage

 1 781 781 100%

100 nodes

1000 nodes

9

 What if storing all reachable

states (for perfect recall) takes

too much memory?

 That’s Okay: Recall does not have

to be completely Perfect: it is only

meant to reduce the amount of

duplicate work

 It often suffices to store just a

hash-signature (or just a few bits

using a fixed size Bloom filter)

10

12/16/2014

6

 For large problems, a

full DFS or BFS search

could require excessive

amounts of time

 But, we can parallelize

the tests if we can split

up the search space,

using … randomization

 leading to a technique

for Swarm Testing

method:

(1) use N parallel search engines (hundreds, thousands)

(2) define a small memory bound M for each search

(3) randomize the DFS within each search engine

11

Despite ~98% statement coverage, the

Unit Tests explored 3 orders of

magnitude fewer states than either

Random or TWR.

Testing with Recall (TWR) performed

best.

NVFS UNIT TEST SUITE

12

The arget Statement Coverage (%)

for MSL was 95-100%

We measured the number of unique system states

reached in all the above NVFS unit tests combined as

35,796 unique states (plus 1,175 duplicates)
and an estimated number of 100 distinct execution paths

After 5 hours of RANDOM TESTING

398M states, 50K paths

measured fanout of states

After 5 hours of BFS SEARCH (TWR)

745M states, >>50M paths

measured fanout of states

http://www.geocities.com/xiv_skull/xiv_skull.gif

12/16/2014

7

 There’s one downside: to use Testing with
Recall the application must be instrument-
ed so its state can be captured and
remembered

 But if you do this you can:

 dramatically increase test coverage

 and, you can also perform much stronger
checks, up to full linear temporal logic
model checking of source code

13

"A random element is rather useful

when we are searching for a solution of

some problem.“

A.M. Turing, "Computing machinery and intelligence," Oxford University Press,

MIND (the Journal of the Mind Association), Vol. LIX, no. 236, pp. 433-60,

(1950).

14

12/16/2014

8

15

