Journey to the Core: Core Flight Executive at Lockheed Martin Space Systems Company

Matt Dean
Michael Phillips
Ryan Slabaugh

December 2014
Agenda

- Core Flight Executive (cFE) uses at LM
- Performance studies for cFE
- Software Development Environment
LMSSC Background

- **Civil Space**
 - Human Space Flight: Orion
 - Weather and Climate: GOES-R
 - Exploration: MRO, GRAIL, MAVEN, JUNO, InSIGHT, OSIRIS-REx

- **Strategic Missile Defense**
 - Missile Defense: THAAD
 - Fleet Ballistic Missile (Trident II D5)

- **Military Space**
 - MUOS, GPSIII, SBIRS

- **Advanced Technology Center**

$8.0B in sales for SSC in 2013
IRAD Study Projects

- 2012 RTI DDS Middleware feasibility studies
- 2013 FSW Design Pattern discovery studies (presented @ ‘13 WS)
- 2014 Project to explore migrating LMSSC from stove-piped, program-specific FSW development to enterprise-wide solution
 - Focus has been on Executive layers
 - LMSSC monitored cFE progress over last few years and began investigating in earnest in early 2014
 - Visited with GSFC and adopters of cFE (ARC and JHU-APL) for lessons learned
 - Adopted for use in real-time simulators, demonstration spacecraft FSW, and payload FSW in mid-2014
- 2015 Build on cFE and cFS to meet LMSSC needs
The task:
- Compare performance between real-time middleware capable of performing publish-subscribe tactic
- Use HWIL testbeds and simulators to get relative performance metrics to inform decisions later

The players:
- cFE
 - Implemented by GSFC over decade of program sharing and re-use
 - Contains 5 most similar components used in spacecraft FSW, one of which is Software Bus publish-subscribe capability
 - Strengths: flight heritage, man-rated certification, wide adoption within NASA for a variety of purposes, operating system abstraction for easier porting
- RTI DDS
 - RTI DDS is an implementation of OpenDSS standard from OMG
 - Successfully used in several places within LM (not LMSSC)
 - Publish-subscribe tactic viewed as the enabling capability to reduce integration duration, complexity, and cost
 - Strengths: implemented quality of service settings, record and playback tools,

The metrics:
- Mainly interested in characterizing delay introduced by sophisticated IPC methods

Concerns in LM that publish-subscribe will introduce unacceptable latencies
The test environment

- MVME6100 single-board computers in a VME backplane
 - Plentiful, PowerPC-based processors
 - Similar to BAE RAD750 which is widely used on LMSSC spacecraft programs
- WindRiver VxWorks 6.6 RTOS
 - Used standard VxW message queues to compare to the other two
- Vanguard VME analyzer for timing
 - Instrumented test code around middleware transport calls
 - Trap on VME address writes
 - Vanguard claims 7ns timing resolution
 - Experience has shown reliable resolution to hundreds of nanoseconds resolution
- Test applications that transport messages of various lengths
- For the moment, test only covers transport within a single SBC; not across processor nodes.
- cFS SW Bus Network app still not released so prevented comparison across processor nodes

The expectations

- cFE performance will be dependent on number of subscribed users since bulk of delay is on sender
- Less insight to RTI DSS implementation, but anticipating RTI’s solution to be slower overall.

Test env focused on software running in a single single-board computer
IRAD 2014: Middleware Performance Results

Results for multi-single board case included for comparison
IRAD 2014: Middleware Performance Conclusions

• cFE wins battle with RTI…
 – Most comparable to local VxW message queues since same mechanism
 – RTI DDS still 7X slower within single board
 – Latency performance between the implementations mostly insensitive to data rates sampled
 – Need to continue to stress cFE with additional test cases examining more subscribers and longer messages

• …but obviously not the answer for every use
 – Ease of integration trades latency performance

• Test environment gives relative measures expected on flight processors
 – Additional benchmarking tests are needed on more flight-like processors to gain more confidence

Judicious use of publish-subscribe will ensure success for LM programs
IRAD 2014: SW Dev Environment

- Continuing to adopt more and more FOSS tools
 - Google test for unit test
 - Gcov for coverage analysis
 - Eclipse for IDE
 - Cppcheck for code standards and other static code analysis
 - Jenkins for continuous integration
 - Mercurial and Git for SW CM

- Integrated tool suite using Eclipse is an improvement

- Conclusions
 - Tool chain, process, and techniques are major aspect of being affordable
 - FOSS adoption taking off in LM compared to previous years

FOSS adoption continuing to accelerate as FOSS products mature