
Test verification and anomaly
detection through configurable

telemetry scanning

Alan S. Mazer

Instrument Flight Software Group
Instruments Division

Jet Propulsion Laboratory, California Institute of Technology

E-mail: alan@judy.jpl.nasa.gov

© 2015 California Institute of Technology. Government sponsorship acknowledged.

mailto:alan@judy.jpl.nasa.gov

The realities of software testing

 Despite hundreds of hours of testing (or more), flight
software still launches with undiscovered errors

 By launch, software has passed through many hands
o Developers
o Peer reviewers
o Integration and test (I&T)
o ATLO pre-launch testing

 Sometimes, if not often, anomalous behavior is
captured in test data unnoticed
o GALEX
o MICAS camera (Deep Space 1)

2

Why aren’t problems found during
development?

 Time constraints
o Sometimes we barely have enough time to write the

software

 Software developers aren’t suited to testing
o Testing is tedious
o Engineers are limited by their “creator” perspective

 Independent testing is a thankless job
o Learning curve costs time and money
o Find problems and people are upset; don’t find problems

and people wonder why you’re paid

3

Why aren’t problems found during
instrument I&T?

 Time constraints
o System I&T is usually pressed by schedule

 Errors may present subtly
o Small telemetry oddity may reflect larger problem

 Cost constraints
o Expertise to recognize software errors is not always

present

 Trust
o Test teams rely on developer testing, prioritizing

software checkout below other pressing issues
o Software problems can always be fixed “later”

4

And…

 “Human factors”
o People get tired and make mistakes
o Testers may not want to question what they’re seeing
o People following procedures focus on following the steps

rather than thinking about what they’re seeing

 Late changes
o Without regression tests, late changes introduce risk as

new requirements are implemented by developers who
have already moved to other projects and forgotten the
code

5

What can we do about this?

 Phase B/C (pre-I&T)
o Define scriptable tests to exercise code
o Provide visibility into software operation through

(perhaps optional) telemetry
o Verify telemetry to determine whether or not test passed

 Phase D (I&T, ATLO)
o With system engineering, create validity rules for all

telemetry points, capturing expertise and determining
which anomalies are reportable

o Verify all test telemetry against rules

6

Verifying telemetry is still hard

 Detailed telemetry verification is not well supported
by common tools

 One approach to verifying a test is to compare test
telemetry to previous runs
o Simple
o Works only if telemetry outputs don’t vary from run to

run (e.g., due to harmless timing variations)

 Another is to use Unix expect (a selective diff) to
verify critical outputs
o Can ignore innocuous variations in telemetry
o But…

 All telemetry must be converted to ASCII
 Repetitive goals are tedious to set up
 Doesn’t support all-telemetry checks

7

Wrote HKCheck to parse telemetry

 Decided to create a rule-based parser, HKCheck,
based on ASCII user-authored configuration files
o Post-processes binary data streams
o “Protocol” spec describes packet/message format(s)
o “Test” spec describes constraints on each telemetry

point, and user goals to be satisfied by a particular test

 Supports phase B/C test verification by checking for
test goals in telemetry
o A goal might be an intended error or receipt of a

particular command

 Supports phase B/C/D by scanning telemetry and
calling out unexpected values

8

“Protocol” defines packet formats

 “Protocol” spec

o Supports heterogeneous packet streams, matched to
packet definitions at run-time based on packet contents
 For example, engineering and science packets in a

common stream
 Packets may be variable-length

o Provides about a dozen built-in data types
 Integer, floating- and fixed-point values
 Various time types, with a variety of epochs
 Several byte orderings

o Allows user-defined constants and data types, and arrays

o Display formats are specific to each telemetry point

9

consttable packetType = {
 NOMINAL = 0
 DUMP = 1
}

packet sciencePacket = {
 uint8:packetType PacketType
 uint16:dec PacketNumber
 uint8:hex Status
 time4s4ss:date SpacecraftTime
 uint8:hex ScienceData[200]
} if (PacketType == NOMINAL)

packet dumpPacket = {
 uint8:packetType PacketType
 uint8:dec DumpLength
 uint8:hex DumpData[DumpLength]
} if (PacketType == DUMP)

Simple Protocol Definition

10

User-defined
constants

Packet def

Packet def

 Each packet def lists a sequence of telemetry points
contained in that packet type.

 Each telemetry point has a data type (e.g., uint8), a
display format (e.g., date, hex), and a name

Simple User-defined Types

datatype error = {
 uint8:errorID errorID
 uint8:hex details[5]
 time4s2ss:date errorTime
}

datatype downloadCommand = {
 uint16:hex memoryAddr
 uint16:dec bytecount
}

11

 User-defined data types allow multiple telemetry points to
be grouped as one

 Reduces complexity of packet definitions
 Simplifies output displays (e.g., error description is one

line rather than 3)

“Error” data defines
structure of single
telemetry point for

display

Subpackets

subpacket status = {
 uint16:dec PktCnt
 uint8:hex FswVer
 uint8:hex ScienceVer
 uint8:hex SensorVer
 uint16:hex Status
 uint8:hex Mode
 time4s2ss:dec SCTime
 uint16:hex CRC
 uint8:dec Resets
 uint8:dec TimesMiss
 uint16:dec CmdsRcvd
 uint16:dec CmdsExec
 uint16:dec CmdsRejected
 mwrMessage LastMsg
 mwrError LastErr
 uint16:dec ErrorCount
}

12

 Subpackets group related telemetry items for inclusion
across multiple packet definitions

“Status” subpacket
groups status items
which appear in both

science and
engineering packet

formats

Protocol for GPS/IMU Data Stream

set byteorder=msb4thin8

subpacket header = {
 uint16:hex syncWord
 uint16:dec msgID
 uint16:dec wordCount
 uint16:hex flags
 uint16:hex checksum
}

packet timemarkPacket = {
 subpacket header
 fixed<1+20+43>:hms gpsSecs
 fixed<1+17+46>:hms utcSecs
 uint16:none pad[5]
 uint16:dec day
 uint16:dec month
 uint16:dec year
 uint16:hex data[wordCount-15]
} if (msgID == 3623)

packet allOthersPacket = {
 subpacket header
 fixed<1+20+43>:hms gpsSecs
 uint16:hex data[wordCount-3]
}

13

Middle-endian byte
ordering specified

All packet formats
include common

header

Format of GPS
TimeMark packet

Format of other
packets

Real-life Protocols Are Large

 Typical protocols for flight instruments run to
hundreds of lines
o User-defined data types and constants
o Subpacket definitions
o Multiple packet definitions

14

“Test” defines conditions for each
telemetry point

 “Test” spec contains actions for each telemetry point
to be performed on each applicable packet

o Allows each telemetry point to be verified against user-
defined conditions and/or conditionally displayed

o Error and display conditions…
 Use C-like syntax
 Can reference the current, previous, and last-different

values
 Can reference the age (in packets) of the current value

15

 For this example, want to…
o Verify packet numbers are sequential
o Verify that S/C time in each science packet is later than

previous S/C time, but not by more than 5 seconds
o Display the contents of each non-empty dump packet

 Nomenclature:
o $ refers to current value; _$ is last value
o “template”, “check”, and “show if” are keywords

template mytest = {
 PacketNumber check $ == _$+1
 SpacecraftTime check $ > _$ && $ <= _$+5
 DumpLength show if $!= 0
 DumpData[0..254] show if DumpLength != 0
}

Simple Test Actions

16

“Test” file defines optional goals to
satisfy

 “Test” files may specify sequential goals to be met
o Can be used to verify that a test completed successfully

as reflected in telemetry
o Goals are simply conditions using same syntax as used

for checks

17

Simple Test Goals

 For this example, want to…
o Verify that first packet in stream is science packet
o Verify that we have at least one non-empty dump packet

 Nomenclature:
o “goal” is a keyword

18

goal “First packet is science packet”
 (PacketNumber == 1 && PacketType == NOMINAL)

goal “Found dump”
 (PacketType == DUMP && DumpLength != 0)

Output

 HKCheck takes the protocol and test file(s), along
with the binary telemetry input, and generates a
report

 Reports show
o Rules violated (“check”)
o Conditionally-displayed values (“show if”)
o Goals met and unmet (“goal”)
o Summary notes (“startnote” and “endnote”)

19

Output Example

 In this portion of a run on flight telemetry from Mars
Climate Sounder, HKCheck found an odd time
increment (nominal is 2-3 seconds)

 Nomenclature:
o “start” is a keyword which evaluates true the first time a

packet type appears in the stream

20

SCTim has an error value: 887581376 (was 887581375)
 Requirement:
 start || Resets == _Resets+1 ||
 ($ >= _$+2 && $ <= _$+3)

Another Output Example

21

LastCmd UPLOAD XRAM 0xcee7 138 0x80 0x75 0x2d

LastCmd UPLOAD XRAM 0xdd46 8 0x02 0xc6 0x77

LastCmd UPLOAD XRAM 0xde84 8 0x02 0xc6 0x30

LastCmd EQX 0 250
Met goal: "CRC check"
Met goal: "Pos-error resync #1"
Met goal: "Pos-error resync #2"
Met goal: "Pos-error resync #3"
...
Status has an error value: 0x42 (was 0x02)
 Requirement:
 $ == 0x00 || $ == 0x02 || $ == 0x40
Met goal: "Pos-error resync #4"
EOF
All goals met
Failed -- found one or more errors

Miscellaneous Capabilities

22

 Useful for ASCII-fying telemetry through “show”
statements as a test record

 Optionally generates spreadsheets as .csv files, or
native Excel (with commercial add-on package)

Summary

 Enables rapid, repeatable testing during development

 Post-launch telemetry can be scanned…
o to confirm instrument health
o postmortem, to look for odd conditions prior to a failure

 Allows expertise to be encoded in rules, reviewed, and
carried through the life of the project

 Used for flight software regression testing or telemetry
scanning on
o Mars Climate Sounder (MRO), Diviner (LRO), Microwave

Radiometer (Juno), Phoenix MECA, GALEX, and various
airborne missions

 Open-source release pending

23

