
Test verification and anomaly
detection through configurable

telemetry scanning

Alan S. Mazer

Instrument Flight Software Group
Instruments Division

Jet Propulsion Laboratory, California Institute of Technology

E-mail: alan@judy.jpl.nasa.gov

© 2015 California Institute of Technology. Government sponsorship acknowledged.

mailto:alan@judy.jpl.nasa.gov

The realities of software testing

 Despite hundreds of hours of testing (or more), flight
software still launches with undiscovered errors

 By launch, software has passed through many hands
o Developers
o Peer reviewers
o Integration and test (I&T)
o ATLO pre-launch testing

 Sometimes, if not often, anomalous behavior is
captured in test data unnoticed
o GALEX
o MICAS camera (Deep Space 1)

2

Why aren’t problems found during
development?

 Time constraints
o Sometimes we barely have enough time to write the

software

 Software developers aren’t suited to testing
o Testing is tedious
o Engineers are limited by their “creator” perspective

 Independent testing is a thankless job
o Learning curve costs time and money
o Find problems and people are upset; don’t find problems

and people wonder why you’re paid

3

Why aren’t problems found during
instrument I&T?

 Time constraints
o System I&T is usually pressed by schedule

 Errors may present subtly
o Small telemetry oddity may reflect larger problem

 Cost constraints
o Expertise to recognize software errors is not always

present

 Trust
o Test teams rely on developer testing, prioritizing

software checkout below other pressing issues
o Software problems can always be fixed “later”

4

And…

 “Human factors”
o People get tired and make mistakes
o Testers may not want to question what they’re seeing
o People following procedures focus on following the steps

rather than thinking about what they’re seeing

 Late changes
o Without regression tests, late changes introduce risk as

new requirements are implemented by developers who
have already moved to other projects and forgotten the
code

5

What can we do about this?

 Phase B/C (pre-I&T)
o Define scriptable tests to exercise code
o Provide visibility into software operation through

(perhaps optional) telemetry
o Verify telemetry to determine whether or not test passed

 Phase D (I&T, ATLO)
o With system engineering, create validity rules for all

telemetry points, capturing expertise and determining
which anomalies are reportable

o Verify all test telemetry against rules

6

Verifying telemetry is still hard

 Detailed telemetry verification is not well supported
by common tools

 One approach to verifying a test is to compare test
telemetry to previous runs
o Simple
o Works only if telemetry outputs don’t vary from run to

run (e.g., due to harmless timing variations)

 Another is to use Unix expect (a selective diff) to
verify critical outputs
o Can ignore innocuous variations in telemetry
o But…

 All telemetry must be converted to ASCII
 Repetitive goals are tedious to set up
 Doesn’t support all-telemetry checks

7

Wrote HKCheck to parse telemetry

 Decided to create a rule-based parser, HKCheck,
based on ASCII user-authored configuration files
o Post-processes binary data streams
o “Protocol” spec describes packet/message format(s)
o “Test” spec describes constraints on each telemetry

point, and user goals to be satisfied by a particular test

 Supports phase B/C test verification by checking for
test goals in telemetry
o A goal might be an intended error or receipt of a

particular command

 Supports phase B/C/D by scanning telemetry and
calling out unexpected values

8

“Protocol” defines packet formats

 “Protocol” spec

o Supports heterogeneous packet streams, matched to
packet definitions at run-time based on packet contents
 For example, engineering and science packets in a

common stream
 Packets may be variable-length

o Provides about a dozen built-in data types
 Integer, floating- and fixed-point values
 Various time types, with a variety of epochs
 Several byte orderings

o Allows user-defined constants and data types, and arrays

o Display formats are specific to each telemetry point

9

consttable packetType = {
 NOMINAL = 0
 DUMP = 1
}

packet sciencePacket = {
 uint8:packetType PacketType
 uint16:dec PacketNumber
 uint8:hex Status
 time4s4ss:date SpacecraftTime
 uint8:hex ScienceData[200]
} if (PacketType == NOMINAL)

packet dumpPacket = {
 uint8:packetType PacketType
 uint8:dec DumpLength
 uint8:hex DumpData[DumpLength]
} if (PacketType == DUMP)

Simple Protocol Definition

10

User-defined
constants

Packet def

Packet def

 Each packet def lists a sequence of telemetry points
contained in that packet type.

 Each telemetry point has a data type (e.g., uint8), a
display format (e.g., date, hex), and a name

Simple User-defined Types

datatype error = {
 uint8:errorID errorID
 uint8:hex details[5]
 time4s2ss:date errorTime
}

datatype downloadCommand = {
 uint16:hex memoryAddr
 uint16:dec bytecount
}

11

 User-defined data types allow multiple telemetry points to
be grouped as one

 Reduces complexity of packet definitions
 Simplifies output displays (e.g., error description is one

line rather than 3)

“Error” data defines
structure of single
telemetry point for

display

Subpackets

subpacket status = {
 uint16:dec PktCnt
 uint8:hex FswVer
 uint8:hex ScienceVer
 uint8:hex SensorVer
 uint16:hex Status
 uint8:hex Mode
 time4s2ss:dec SCTime
 uint16:hex CRC
 uint8:dec Resets
 uint8:dec TimesMiss
 uint16:dec CmdsRcvd
 uint16:dec CmdsExec
 uint16:dec CmdsRejected
 mwrMessage LastMsg
 mwrError LastErr
 uint16:dec ErrorCount
}

12

 Subpackets group related telemetry items for inclusion
across multiple packet definitions

“Status” subpacket
groups status items
which appear in both

science and
engineering packet

formats

Protocol for GPS/IMU Data Stream

set byteorder=msb4thin8

subpacket header = {
 uint16:hex syncWord
 uint16:dec msgID
 uint16:dec wordCount
 uint16:hex flags
 uint16:hex checksum
}

packet timemarkPacket = {
 subpacket header
 fixed<1+20+43>:hms gpsSecs
 fixed<1+17+46>:hms utcSecs
 uint16:none pad[5]
 uint16:dec day
 uint16:dec month
 uint16:dec year
 uint16:hex data[wordCount-15]
} if (msgID == 3623)

packet allOthersPacket = {
 subpacket header
 fixed<1+20+43>:hms gpsSecs
 uint16:hex data[wordCount-3]
}

13

Middle-endian byte
ordering specified

All packet formats
include common

header

Format of GPS
TimeMark packet

Format of other
packets

Real-life Protocols Are Large

 Typical protocols for flight instruments run to
hundreds of lines
o User-defined data types and constants
o Subpacket definitions
o Multiple packet definitions

14

“Test” defines conditions for each
telemetry point

 “Test” spec contains actions for each telemetry point
to be performed on each applicable packet

o Allows each telemetry point to be verified against user-
defined conditions and/or conditionally displayed

o Error and display conditions…
 Use C-like syntax
 Can reference the current, previous, and last-different

values
 Can reference the age (in packets) of the current value

15

 For this example, want to…
o Verify packet numbers are sequential
o Verify that S/C time in each science packet is later than

previous S/C time, but not by more than 5 seconds
o Display the contents of each non-empty dump packet

 Nomenclature:
o $ refers to current value; _$ is last value
o “template”, “check”, and “show if” are keywords

template mytest = {
 PacketNumber check $ == _$+1
 SpacecraftTime check $ > _$ && $ <= _$+5
 DumpLength show if $!= 0
 DumpData[0..254] show if DumpLength != 0
}

Simple Test Actions

16

“Test” file defines optional goals to
satisfy

 “Test” files may specify sequential goals to be met
o Can be used to verify that a test completed successfully

as reflected in telemetry
o Goals are simply conditions using same syntax as used

for checks

17

Simple Test Goals

 For this example, want to…
o Verify that first packet in stream is science packet
o Verify that we have at least one non-empty dump packet

 Nomenclature:
o “goal” is a keyword

18

goal “First packet is science packet”
 (PacketNumber == 1 && PacketType == NOMINAL)

goal “Found dump”
 (PacketType == DUMP && DumpLength != 0)

Output

 HKCheck takes the protocol and test file(s), along
with the binary telemetry input, and generates a
report

 Reports show
o Rules violated (“check”)
o Conditionally-displayed values (“show if”)
o Goals met and unmet (“goal”)
o Summary notes (“startnote” and “endnote”)

19

Output Example

 In this portion of a run on flight telemetry from Mars
Climate Sounder, HKCheck found an odd time
increment (nominal is 2-3 seconds)

 Nomenclature:
o “start” is a keyword which evaluates true the first time a

packet type appears in the stream

20

SCTim has an error value: 887581376 (was 887581375)
 Requirement:
 start || Resets == _Resets+1 ||
 ($ >= _$+2 && $ <= _$+3)

Another Output Example

21

LastCmd UPLOAD XRAM 0xcee7 138 0x80 0x75 0x2d

LastCmd UPLOAD XRAM 0xdd46 8 0x02 0xc6 0x77

LastCmd UPLOAD XRAM 0xde84 8 0x02 0xc6 0x30

LastCmd EQX 0 250
Met goal: "CRC check"
Met goal: "Pos-error resync #1"
Met goal: "Pos-error resync #2"
Met goal: "Pos-error resync #3"
...
Status has an error value: 0x42 (was 0x02)
 Requirement:
 $ == 0x00 || $ == 0x02 || $ == 0x40
Met goal: "Pos-error resync #4"
EOF
All goals met
Failed -- found one or more errors

Miscellaneous Capabilities

22

 Useful for ASCII-fying telemetry through “show”
statements as a test record

 Optionally generates spreadsheets as .csv files, or
native Excel (with commercial add-on package)

Summary

 Enables rapid, repeatable testing during development

 Post-launch telemetry can be scanned…
o to confirm instrument health
o postmortem, to look for odd conditions prior to a failure

 Allows expertise to be encoded in rules, reviewed, and
carried through the life of the project

 Used for flight software regression testing or telemetry
scanning on
o Mars Climate Sounder (MRO), Diviner (LRO), Microwave

Radiometer (Juno), Phoenix MECA, GALEX, and various
airborne missions

 Open-source release pending

23

