Test verification and anom
detection through configura
telemetry scanni

Alan S. Mazer

Instrument Flight Software Group
Instruments Division
Jet Propulsion Laboratory, California Institute of Technology

E-mail: alan@judy.jpl.nasa.gov

© 2015 California Institute of Technology. Government sponsorship acknowledged.

mailto:alan@judy.jpl.nasa.gov

Despite hundreds of hours of testing (or more), flight
software still launches with undiscovered errors

By launch, software has passed through many hands
Developers
Peer reviewers
Integration and test (I&T)
ATLO pre-launch testing

Sometimes, if not often, anomalous behavior is

captured in test data unnoticed
GALEX
MICAS camera (Deep Space 1)

Time constraints
Sometimes we barely have enough time to write the
software

Software developers aren’t suited to testing
Testing is tedious
Engineers are limited by their “creator” perspective

Independent testing is a thankless job
Learning curve costs time and money
Find problems and people are upset; don’t find problems
and people wonder why you’'re paid

Time constraints
System I&T is usually pressed by schedule

Errors may present subtly
Small telemetry oddity may reflect larger problem

Cost constraints
Expertise to recognize software errors is not always
present

Trust
Test teams rely on developer testing, prioritizing
software checkout below other pressing issues
Software problems can always be fixed “later”

“Human factors”
People get tired and make mistakes
Testers may not want to question what they’re seeing
People following procedures focus on following the steps
rather than thinking about what they’re seeing

Late changes
Without regression tests, late changes introduce risk as
new requirements are implemented by developers who
have already moved to other projects and forgotten the
code

Phase B/C (pre-I&T)
Define scriptable tests to exercise code
Provide visibility into software operation through
(perhaps optional) telemetry
Verify telemetry to determine whether or not test passed

Phase D (I&T, ATLO)
With system engineering, create validity rules for all
telemetry points, capturing expertise and determining
which anomalies are reportable
Verify all test telemetry against rules

Detailed telemetry verification is not well supported
by common tools

One approach to verifying a test is to compare test

telemetry to previous runs
Simple
Works only if telemetry outputs don’t vary from run to
run (e.g., due to harmless timing variations)

Another is to use Unix expect (a selective diff) to

verify critical outputs
Can ignore innocuous variations in telemetry
But...
All telemetry must be converted to ASCII
Repetitive goals are tedious to set up
Doesn’t support all-telemetry checks

Decided to create a rule-based parser, HKCheck,

based on ASCII user-authored configuration files
Post-processes binary data streams
“Protocol” spec describes packet/message format(s)
“Test” spec describes constraints on each telemetry
point, and user goals to be satisfied by a particular test

Supports phase B/C test verification by checking for

test goals in telemetry
A goal might be an intended error or receipt of a
particular command

Supports phase B/C/D by scanning telemetry and
calling out unexpected values

“Protocol” spec

Supports heterogeneous packet streams, matched to
packet definitions at run-time based on packet contents
For example, engineering and science packets in a
common stream
Packets may be variable-length

Provides about a dozen built-in data types
Integer, floating- and fixed-point values
Various time types, with a variety of epochs
Several byte orderings

Allows user-defined constants and data types, and arrays
Display formats are specific to each telemetry point

consttable packetType = {

NOMINAL = 0O :
DUMP = 1 | User-defined
¥ ‘ constants
packet sciencePacket = {
uint8:packetType PacketType
uintl6:dec PacketNumber
umt84h4ex g gtatus - |
time4s4ss:date pacecraftTime Packet def
uint8:hex ScienceData[200] ‘
} if (PacketType == NOMINAL)
packet dumpPacket =
uint8:packetType PacketType {
uint8:dec DumplLength | Packet def
uint8:hex DumpData[DumpLength]

} if (PacketType == DUMP)

« Each packet def lists a sequence of telemetry points
contained in that packet type.

+ Each telemetry point has a data type (e.g., uint8), a
display format (e.g., date, hex), and a name

datatype error = {

uint8:errorID errorlD
uint8:hex details[5]

timeds2ss:date errorTime

datatype downloadCommand = {

“Error” data defines
structure of single
telemetry point for

display

uintl6:hex memoryAddr
uintl6:dec bytecount

g

- User-defined data types allow multiple telemetry points to

be grouped as one
+ Reduces complexity of packet definitions

« Simplifies output displays (e.qg., error description is one

line rather than 3)

subpacket status = {

uintl6:dec PktCnt W "

uint8:hex FswVer Status” subpacket
uint8:hex ScienceVer groups status items
uint8:hex SensorVer : :
uinté6r:]hex Eltaéus which appear in both
uint8:hex ode cience an
time4s2ss:dec SCTime S) and
uintéGC;Ihex SR:RC engineering packet
uint8:dec esets

uint8:dec TimesMiss formats
uintl6:dec CmdsRcvd

uintl6:dec CmdsExec

uintl6:dec CmdsRejected

mwrMessage LastMsg

MwrError LastErr

uintl6:dec ErrorCount

« Subpackets group related telemetry items for inclusion
across multiple packet definitions

Ll
\ —_ — — —~ -
\\ — A —_—
— ——

— — . A A % B 1

set byteorder=msb4thin8 .

subpacket header = {
uintl6:hex
uintl6:dec
uintl6:dec
uintl6:hex
uintl6:hex

¥

packet timemarkPacket = {

subpacket

fixed<1+20+43>:hms gpsSecs

syncWord

Middle-endian byte
ordering specified

msglD

wordCount _
flags
checksum

All packet formats
include common
header

header

fixed<1+17+46>:hms utcSecs

uintl6:none
uintl6:dec
uintl6:dec
uintl6:dec
uintl6:hex

¥ if (msgID == 3623)

pad[5]

day

month

year
data[wordCount-15]

packet allOthersPacket = {

subpacket

header

fixed<1+20+43>:hms gpsSecs

uintl6:hex

data[wordCount-3]

Format of GPS
TimeMark packet

Format of other
packets

Typical protocols for flight instruments run to
hundreds of lines
User-defined data types and constants
Subpacket definitions
Multiple packet definitions

“Test” spec contains actions for each telemetry point
to be performed on each applicable packet

Allows each telemetry point to be verified against user-
defined conditions and/or conditionally displayed

Error and display conditions...
Use C-like syntax
Can reference the current, previous, and last-different
values
Can reference the age (in packets) of the current value

For this example, want to...
Verify packet numbers are sequential
Verify that S/C time in each science packet is later than
previous S/C time, but not by more than 5 seconds
Display the contents of each non-empty dump packet

Nomenclature:
$ refers to current value; _$ is last value

7\

“template”, “check”, and “show if” are keywords

template mytest = {

PacketNumber check $ == _$+1
SpacecraftTime check $ > $ && $ <= _$+5
DumpLength show if $ 1= 0

DumpData[0..254] show if DumpLength '= 0

“Test” files may specify sequential goals to be met
Can be used to verify that a test completed successfully
as reflected in telemetry
Goals are simply conditions using same syntax as used
for checks

For this example, want to...
Verify that first packet in stream is science packet
Verify that we have at least one non-empty dump packet

Nomenclature:
“goal” is a keyword

I\\

goal “First packet is science packet”

(PacketNumber == 1 && PacketType == NOMINAL)

goal “"Found dump”
(PacketType == DUMP && DumpLength !'= 0)

HKCheck takes the protocol and test file(s), along
with the binary telemetry input, and generates a
report

Reports show
Rules violated (“check”)
Conditionally-displayed values (“show if”)
Goals met and unmet (“goal”)
Summary notes (“startnote” and “endnote”)

In this portion of a run on flight telemetry from Mars
Climate Sounder, HKCheck found an odd time
increment (nominal is 2-3 seconds)

Nomenclature:

“start” is a keyword which evaluates true the first time a
packet type appears in the stream

SCTim has an error value: 887581376 (was 887581375)
Requirement:
start || Resets == _Resets+1 ||
($>=_$+2 && $ <= _%$+3)

LastCmd UPLOAD XRAM 0Oxcee”7 138 0x80 0x75 0x2d
LastCmd UPLOAD XRAM 0xdd46 8 0x02 0xc6 0x77
LastCmd UPLOAD XRAM 0Oxde84 8 0x02 0Oxc6 0x30

LastCmd EQX 0 250

Met goal: "CRC check"

Met goal: "Pos-error resync #1"
Met goal: "Pos-error resync #2"
Met goal: "Pos-error resync #3"

Status has an error value: 0x42 (was 0x02)
Requirement:
$==0x00]|| $ ==0x02]|| $ == 0x40
Met goal: "Pos-error resync #4"
EOF
All goals met
Failed -- found one or more errors

Useful for ASCII-fying telemetry through “show”
statements as a test record

Optionally generates spreadsheets as .csv files, or
native Excel (with commercial add-on package)

Enables rapid, repeatable testing during development

Post-launch telemetry can be scanned...
to confirm instrument health

postmortem, to look for odd conditions prior to a failure

Allows expertise to be encoded in rules, reviewed, and
carried through the life of the project

Used for flight software regression testing or telemetry
scanning on

Mars Climate Sounder (MRO), Diviner (LRO), Microwave

Radiometer (Juno), Phoenix MECA, GALEX, and various
airborne missions

Open-source release pending

