Growing Flight Software Hands-On Experience: CFS and Educational Outreach

Allen Brown, Mathew Benson
Odyssey Space Research, LLC

2015 Workshop on Spacecraft Flight Software
JHU APL - Laurel MD

This presentation does not contain US export controlled material.
Company Background

- Odyssey Space Research LLC
 - Established 2003

- Core Areas
 - GN&C design, analysis, integration, evaluation, test
 - Flight software development, test
 - Simulation development, integration

- Current Principal Projects
 - SpaceX Dragon ISS Resupply/Commercial Crew
 - Orbital ATK Cygnus ISS Resupply
 - Orion Multi-Purpose Crew Vehicle
 - Visiting Vehicle Integration with ISS
 - Exploration Mission analysis and design
 - Flight Dynamics for Mission Operations
Company Background

- LM Orion (MPCV) Flight Software
 - Development, Integration, Verification, Test
 - GNC, ECLSS, EPS, BFS...
- FSW Safety IV&V
 - Dragon, Cygnus
- Core Flight System (CFS)
 - Internal Research & Development
 - Unmanned Aircraft Systems (UAS) Platforms
 - Integrated FSW Simulations
 - Integrated Development Environment
 - NASA
 - Class A Certification (Human Rating)
 - Commanding/Telemetry Upgrades
 - New CFS platforms (Xenomai, ARINC 653)
 - CFS Voting Architecture
- Other S/W Projects with Outreach
 - SpaceLab for iOS

2015 Workshop on Spacecraft Flight Software (FSW-15)
Flight Software Education

• Flight Software vs. “software that flies”
 - A mindset
 - Touches all aspects: flight vehicle, ground systems, communications, operations, development, ...

• Why?
 - $$ Cost? Yes and no... $$
 - Remote vehicle
 - Communication latency, outages
 - Environment stresses → failures
 - Loss of mission, loss of vehicle (and/or loss of crew!)
Flight Software Education

• Usually on the job...
 – ...Education before a career starts?
 – Benefits

• A great way to learn...
 … learn by doing.
 Safely? No/little cost for failure?

• Now, a new opportunity...
Purpose

• Supporting NASA JSC Engineering Directorate
• Create a set of course material
 – University-level
 – Assume software development exposure
 – “Learn by doing”
• Illustrate use of (CFS)
 – Now open source (NOSA)
 – Focus on CFS application development, mods
 – Include and provide references on CFS
 • Including layers: cFE, OSAL, PSP
Purpose

• Illustrate a FSW development process
 – “Test like you fly” & “Fly like you test”
 – CFS with integrated Trick Simulation Environment
 • Now open source (NOSA)
 – Use the same command/telemetry tools between test and flight

• Package it all together:
 – Interesting, usable, representative, available.
Approach

- Create a single Virtual Machine (VM) Linux image
- Use existing open source products
- Craft “hands-on” tutorials
 - Include new outreach CFS applications
 - Include new outreach sim software models
- User:
 - Laptop with WiFi
 - (Parrot SA) AR.Drone 2.0 quadcopter
Components

- **Linux VM Image**
 - VirtualBox VM software (open source)
 - RHEL → CentOS (open source) for outreach
 - x86_64 guest image
 - CFS (framework and apps) for Linux/POSIX
 - open source: SourceForge
 - Generic Drone Sim (Trick)
 - open source: GitHub
 - x86_64, x86_32 Linux toolchain (open source)
 - ARM cross-compile toolchain (open source)
Components

- Eclipse development environment (in VM) (open source)
 - Eclipse CDT (C/C++ development)
 - editing, debugging, building, profiling, etc.
 - CFS and Sim development
 - Displays (via Eclipse plugins) (are/will be open source)
 - Commanding and telemetry
 - Drone flight control
- Documentation: Trac (in VM) (open source)
 - Wiki, issue tracking – default Firefox browser
 - All course materials as wiki pages
 - User-modifiable
Components

- AR.Drone 2.0 (COTS)
 - 1 GHz ARM Cortex A8, Linux
 - WiFi a/b/n
 - 2 cameras, gyro, accelerometer
 - magnetometer
 - barometric pressure sensor
 - ultrasound altitude sensor

- NOT manipulating GNC algorithms
 - Respecting Parrot, SA IP
 - Utilizing existing (unmodified) UDP sockets (described in SDK)
 - CFS interaction, display interaction

- NOT endorsed by manufacturer
 - Running CFS (off and) ON the drone
 ...Voiding your warranty there...
Current Status

- VM: created, using for dev work
 - VM config with bridged host WiFi adaptor to drone
- CFS drone apps running in VM Guest
 - Running in prototype Trick drone sim
 - Running with “drone in-the-loop” (HWIL)
- CFS drone apps running ON drone
- Basic flight via CFS interfaces
- Prototyping Displays
 - Includes Odyssey IRAD efforts
Prototype Display

This presentation does not contain US export controlled material.

2015 Workshop on Spacecraft Flight Software (FSW-15)
Current Status

- Building tutorial outline
- Capturing necessary support docs
 - Host, drone installation & configuration
 - VM setup
 - Connecting to the AR.Drone
 - CFS build and deploy instructions
 - Debugging CFS on the AR.Drone with Eclipse
 - etc.
Current Status

- Prototyping: VM development process
 - Repeatable packaging process (CI, CD)
 - Creation, provisioning OS
 - Provisioning/updating outreach content
 - Packaging and testing release image
 - Currently a Git, Vagrant, VirtualBox, Jenkins recipe
Future

- Complete “dev/test” environment
 - Sim, displays, CFS apps
- Complete course materials
- Refine packaging process, user testing

- Release planned for 2016 (?)
Special Thanks

- Dr. Lorraine Prokop, NASA JSC
- David McComas, NASA GSFC
- CFS and Trick software supporters
Thank you.

Q & A