Strength in Numbers:
Core Flight System in a Real-Time Environment on a Multi-Core Space Processor

Patrick Gauvin | Ryan Slabaugh
December 2016
Agenda

• Motivation
• SkyFire Flight Software
• CHREC Space Processor
• RTEMS Board Support Package
• Operating System Abstraction Layer
• Platform Support Package
• Successes and Challenges
• Future Work
Motivation

• NASA NextSTEP Cube Satellite
• 6U Form Factor
• Lunar Flyby Mission
• Demonstration platform
• NASA cFS
• CHREC Space Processor
SkyFire Flight Software Baseline

- Nov. 2015: Baselined FSWCC & CHREC Space Processor (CSP)
- Feb. 2015: Baselined RTEMS 4.11
- May 2015: Demonstrated FSWCC on RTEMS/Zedboard
- Jun. 2015: Upgraded to cFS 6.5
- Jul. 2015: Demonstrated FSWCC on RTEMS/CSP
CHREC Space Processor v1

• Motivation
 – Create a scalable, high performance, lower power, reconfigurable, and high reliability development system to meet future mission needs

• Overview
 – CHREC Space Processor v1 (CSPv1) is first design in family of CHREC-developed boards embodying CSP concept
 – Unique selective population scheme supports assembly of Engineering Model (EM) or flight design
 – Flexible app speedup with hybrid and reconfigurable architecture coupled with cost-effective prototyping

• Keystone Principle
 – Commercial technology featured, for best in high performance and energy efficiency, but monitored by radiation-hardened devices, and augmented with fault-tolerant computing strategies
RTEMS Real-Time Operating System

• Xilinx Zynq supported in RTEMS
 – ZedBoard and QEMU Board Support Packages available
 – CSP uses NAND rather than SD non-volatile memory
• ARM PrimeCell PL350 series NAND controller driver developed
• SPI driver for Zynq processing system developed
• Future Plans
 – Xilinx Zynq Device Configuration (DevCfg) driver
 • Allows FPGA reconfiguration and scrubbing at runtime
 – Submit device driver and BSP patches to RTEMS upstream
cFS Operating System Abstraction Layer Porting

• Started with POSIX OSAL
 – Primary benefit: POSIX libdl for runtime loading, rather than CEXP
 • CEXP has no ARM support

• Challenges
 – ARM cache problems after application load (now patched in upstream RTEMS)
 – RTEMS ARM Run Time Loader (RTL) object cache bug
 – RTEMS ARM RTL unable to handle weak symbols bug
 – RTEMS is *mostly* POSIX compliant
 • SA_RESTART flag unsupported
 • dlerror non-conformance
 – cFS OSAL initialization thread priority
 • Complications from applications preemptioning the init thread
cFS Platform Support Package Porting

• Ported *pc-linux* PSP
• Minimal modification due to POSIX compliance
• RTEMS timer server used for cFE 1 Hz timer
 – Tick function requires thread context
• Challenges
 – Tricky to resolve undefined symbols from cFE applications in the base image
 – Current workaround is to use ‘nm’ to list undefined symbols, then force them into the base image
Successes & Challenges

• Successes
 – SkyFire flight software is executing on RTEMS/CSP
 – Upgrade to cFS 6.5 was virtually seamless
 – RTEMS issues patched/fixed
 • Thank you to RTEMS mailing lists/Chris Johns/Pavel Pisa/Joel Sherrill
 – cFS OSAL & PSP were great starting points for port to ARM-RTEMS

• Challenges
 – Pathfinders for RTEMS ARM runtime loader
 – Porting pc-linux OSAL to arm-rtems
Future Work

• Lockheed Martin SkyFire
 – Integrate final revision of CSP NAND Flash
 – Software-hardware integration
 – Functional verification testing
 – Deliver March 2018

• CHREC
 – Continue increasing RTEMS support for CSPv1
 – Expansion to University of Pittsburgh