Growing Flight Software Hands-On Experience: cFS and Educational Outreach

Allen Brown, Mathew Benson
Odyssey Space Research, LLC

2016 Workshop on Spacecraft Flight Software
California Institute of Technology – Pasadena, CA
Company Background

- Odyssey Space Research LLC
 - Established 2003

- Core Areas
 - GN&C design, analysis, integration, evaluation, test
 - Flight software development, test
 - Simulation development, integration

- Current Principal Projects
 - SpaceX Dragon ISS Resupply/Commercial Crew
 - Orbital ATK Cygnus ISS Resupply
 - Orion Multi-Purpose Crew Vehicle
 - Visiting Vehicle Integration with ISS
 - Exploration Mission analysis and design
 - Flight Dynamics for Mission Operations
 - NASA Training Systems for Operations
Company Background

- LM Orion (MPCV) Flight Software
 - Development, Integration, Verification, Test
 - GNC, ECLSS, EPS, BFS...
- FSW Safety IV&V
 - Dragon, Cygnus
- Core Flight System (cFS)
 - Internal Research & Development
 - Integrated FSW Simulations
 - Unmanned Aircraft Systems (UAS) Platforms
 - Integrated Development Environments
 - Command and Telemetry UI, data management
 - Human-in-the-Loop Flight Mockup
 - NASA Support
 - Integrated FSW Simulations
 - Class A Certification (Human Rating)
 - New cFS platforms (Xenomai, ARINC 653)
 - cFS Voting Architecture
 - Distributed cFS Integration
 - New cFS Apps/Libs for Commands/Telemetry
 - Command and telemetry UI architecture & development

- Other S/W Projects with Outreach
 - SpaceLab for iOS
cFS Education Outreach

• “Jump in and learn by doing”
 - A structured, hands-on, set of demos and tutorials
 - Focus on basic cFS application development
 - Include the basics of cFS mission integration

• “Test like you fly, fly like you test”
 - Engage with cFS on flying hardware
 - Illustrate the elements of a minimal FSW development process
 • Test with cFS in an integrated simulation environment
 - Use the same command/telemetry tools between test and flight

• Course material aim
 - University-level
 • Quite useful for industry engineers as well
 - Assume some software development exposure
 - Include cFS docs & add reference material

✔ Interesting
✔ Usable
✔ Representative
✔ Available
Components & Packaging

• A Linux VM Image
 – Everything included for the outreach demos & tutorials
 – VM setup instructions

• User:
 – Laptop with WiFi
 – Parrot SA AR.Drone 2.0 quadcopter
 – *(Drone is somewhat optional, could be shared)*
Components & Packaging

- AR.Drone 2.0 (COTS)
 - 1 GHz ARM Cortex A8, Linux
 - WiFi a/b/n
 - 2 cameras, gyro, accelerometer
 - magnetometer
 - barometric pressure sensor
 - ultrasound altitude sensor

- cFS interacts via UDP over WiFi
 - Existing Interface, no drone firmware or GNC mods
 - Simpler, doesn't risk drone, easier to simulate
 - Run cFS in Linux VM or on the AR.Drone
Components & Packaging

- CentOS x86_64 Linux Distro
- cFS from SourceForge
 - PSP, OSAL, cFE, apps/libs
 - Source code, documentation
 - Script tools
- Trick Simulation (GitHub)
 - Drone simulation provided
- x86_64, x86_32 Linux toolchain
- ARM cross-compiling toolchain
 - On-target debug support
- Eclipse/CDT
- Demos, tutorials, references
 - Editable wiki inside the VM
- cFS Command & Display Tool
 - Yamcs Studio (cFS plugin)
 - Custom AR.Drone pages
- cFS Performance Monitor
- Minor mods for streamlining:
 - SCH table generation
 - ARM Linux PSP
 - SC Table generation
 - Builds on drone kernel
Screenshot: VM Desktop

2016 Workshop on Spacecraft Flight Software (FSW-16)
Screenshot: Provided Tools & Shortcuts

2016 Workshop on Spacecraft Flight Software (FSW-16)
Screenshot: Example Course Material
Screenshot: cFS Running With Simulated Drone

Not shown: Trick graphs and plots

2016 Workshop on Spacecraft Flight Software (FSW-16)
Screenshot: Example cFS Drone App Display Page
(Yamcs Studio w/ cFS plugin)
Content Overview

- Install & Configure VM
 - Connecting to the Drone
- Getting Started
- Overview of cFE and cFS Applications
- Demo: Hover
 - Basic build, deploy to drone
 - Use cmd/tlm interface
 - Fly the drone with cFS!
- Demo: Hover (Linux)
 - Build, run cFS with drone sim, same cmd/tlm tools
- Tutorial: Hello World
 - Create, integrate, build, execute
 - Test with cmd/tlm tools
 - Introduce tools/scripts
- Demo: Tables with Stored Command
 - Introduce cFE tables, via SC
- Tutorial: SC for Canned Maneuvers
 - Learn how to integrate an existing app (SC)
 - Create and run your own table
 - Test/debug in drone simulation

Bold = requires drone
Content Overview (cont'd)

- Demo: Loss of Comm Scenario
 - Showcase – in the sim!

- Tutorial: Add Loss of Comm Watchdog cFS App
 - A small custom cFS watchdog app to auto-land the drone
 - Create, integrate, build, debug, and test (in the sim!)

- Tutorial: Performance Monitoring
 - cFE Performance Monitor log entries, ID coordination
 - Using the cmd/tlm & GUI tools

- References:
 - Released cFS documentation
 - Build instructions, debugging, remote debugging on the target
 - cFE and cFS Yamcs cmd/tlm
 - Overview of cFS and the (supplied) ARDrone apps
 - cFS App Design Comments
 - cFS Operational Concepts
 - cFS App Integration Checklist
 - cFE Startup Script Info
 - Trick Sim References
Lessons Learned

- No such thing as “THE way” to make a cFS App
 - App structure, message response behavior
 - Relationship with: SCH, telem/HK, upstream & downstream apps

- cFS App development requires cFS integration minimum knowledge
 - Coordinating Message IDs, Perf IDs, etc.
 - Constructing/updating SCH tables, TO tables, etc.
 - Building, deploying, executing, commanding, debugging

- Command & telemetry tools are required from the start for development
 - Need to be easily tailored by the engineer

- “Polish” takes time & effort
 - “Local” audience vs. unknown audience
 - Wiki format looks like a great choice (in VM for now, room for growth)
 - The NASA release process does affect the design/build approach of an outreach package
 - A repeatable VM build system is critical

- Yes, expansion/refinement is possible on every single front...
Current Status

• Going through the process for NASA Public Release
 – Goal: Release under NASA Open Source Agreement (NOSA)

In progress...
...gears turning!
Thanks

• NASA
 – Dr. Lorraine Prokop, JSC
 – David McComas, GSFC

• Developers & Reviewers

• The Open-Source Communities
 – cFS, Trick software supporters
Thank you.

Q & A