
This is a non-ITAR presentation, for public release and reproduction from FSW website.

Striving for DevOps on a Large Flight Mission

Joe-Paul Swinski

NASA/Goddard Space Flight Center

Flight Software Branch

December 2017

Lessons learned from the ICESat-2/ATLAS
flight software test effort

1

This is a non-ITAR presentation, for public release and reproduction from FSW website.

Scope of ICESat-2/ATLAS Effort

MissionScope: Class C mission. Sole instrument on ~$1B observatory. 8 year development effort. 5 year primary

mission. Significant technology development.

Staffing Scope: 19 different people worked on ATLAS flight software at one point or another. At our peak there

were 11 people on the team, on average there were 8 people on the team.

Hardware Scope: Four processor boards, of which two unique (1 Rad750, 3 Leon3FT). SpaceWire network as

backplane with 12 nodes and three routers.

Requirement Scope: C&DH, four control algorithms (PID thermal control, mechanism control, geolocation, ground

selection), computationally intense and sophisticated ground selection algorithm. Variable data rates from 1Mbits

to 80Mbits, 6Mbits nominal in flight. For ground testing, often closer to 40Mbits.

Software Scope: Four CSCIs (two PROM boot loaders at class B, two EEPROM applications at class C). 24 tasks (15

on Rad750, 9 on Leon3FT). ~85KSLOC of flight code. ~500KSLOC of total code including GSE, utilities, and reuse (but

not operating systems).

2

This is a non-ITAR presentation, for public release and reproduction from FSW website.

What is DevOps

DevOps is a catch word for delivering faster

time + resources

ri
sk DevOps

Å Tools and practices that shorten the time from
development to operations: the amount of time and
resources necessary to translate a requirement into a
delivered product.

Å Programmatically merging (or bringing closer
together) the team that develops the software with
the team that supports the operation of the
software.

Å Combining or extending the infrastructure used to
develop the software with the infrastructure that
hosts/delivers/operates the software.

3

This is a non-ITAR presentation, for public release and reproduction from FSW website.

Time & Money– we can take more time, buy better tools,

hire more people (and hopefully manage them well)

Risk– we can accept a greater chance of failure or problems

People– we can hire/retain better engineers

Process - we can make better use of what we have already

Why is DevOps a Worthy Goal

What We Care About

Reliability- Does it behave the way we intended it to

behave? (e.g. bugs, brittle design, unreasonable operating

constraints)

Stability - Does it behave the way they expect it to

behave? (e.g. are we breaking interfaces, breaking

previous understandings, or changing behaviors)

What We Can Do

4

This is a non-ITAR presentation, for public release and reproduction from FSW website.

Time & Money– we can take more time, buy better tools,

hire more people (and hopefully manage them well)

Risk– we can accept a greater chance of failure or problems

People– we can hire/retain better engineers

Process - we can make better use of what we have already

Why is DevOps a Worthy Goal

What We Care About

Reliability- Does it behave the way we intended it to

behave? (e.g. bugs, brittle design, unreasonable operating

constraints)

Stability - Does it behave the way they expect it to

behave? (e.g. are we breaking interfaces, breaking

previous understandings, or changing behaviors)

What We Can Do

DevOps

5

This is a non-ITAR presentation, for public release and reproduction from FSW website.

Time & Money– we can take more time, buy better tools,

hire more people (and hopefully manage them well)

Risk– we can accept a greater chance of failure or problems

People– we can hire/retain better engineers

Process - we can make better use of what we have already

Why is DevOps a Worthy Goal

What We Care About

Reliability- Does it behave the way we intended it to

behave? (e.g. bugs, brittle design, unreasonable operating

constraints)

Stability - Does it behave the way they expect it to

behave? (e.g. are we breaking interfaces, breaking

previous understandings, or changing behaviors)

What We Can Do

This is nothing new, and DevOps is not the first (nor will be the
last) process to promise “free” improvements to what we care
about – but due diligence says to take a look and see if there is
anything we can steal and use to improve what we do.

DevOps

6

This is a non-ITAR presentation, for public release and reproduction from FSW website.

DevOps on ATLAS

1. We never thought about it as “DevOps”
Back in 2010 a couple of us on the team came together and had similar ideas regarding our requirement
Ą development Ą test Ą delivery cycle. Namely – could we make it fundamentally shorter?

Typical projects we had all worked on had about a 3 to 8 month release cycle. Any new requirement or
change would first have to wait until the next release to be given to the test team, which would then
take 3 months or more to test, before being delivered.

It just seemed wrong… so we asked: how short could we make this cycle? A few weeks? A few days?
What about a few hours? Could we develop a process where we received a new requirement in I&T on
a Monday and by Thursday of the same week, without any compromises, we delivered a fully tested
release of code to the observatory with no greater risk than the current approach?

2. We called it “testing to trunk”
We were using SVN at the time and so “testing to trunk” meant that the test team was only to develop
tests for the code that was sitting in trunk (i.e. the tip of development).

It caused quite a stir in the branch and I had to convince multiple people to let me do it, but finally the
branch head at the time gave me the go ahead. In the end it turned out that “testing to trunk” required
a lot more than just testing to the trunk. 7

This is a non-ITAR presentation, for public release and reproduction from FSW website.

Historical Approach: The Walls of Truth

The
Development

Team

The Test
Team

The
Customer

Developed Code Tested Code

Requirements
8

This is a non-ITAR presentation, for public release and reproduction from FSW website.

Advantages to The Walls of Truth

ÅThe independence of the test team protects against
developer bias

ÅThere are multiple fresh looks at each requirement

ÅThe development and test activities can be
managed separately (to some extent) allowing for
separate leads, and separate skill sets (e.g. C
programmers vs. STOL script writers)

ÅBy the time the customer receives a piece of code,
it has been tested, unchanged, for nearly six
months (reliability and stability have been bought
with time)

9

This is a non-ITAR presentation, for public release and reproduction from FSW website.

Disadvantages to The Walls of Truth

ÅThe rest of the project is operating in the “now”
and our code reflects an understanding of the
project that is 6 months (or more) old.

ÅIn I&T, when we need to make a change right away,
we have to “break” our process to deliver it – either
by accepting higher levels of risk, or asking for
heroics from our team.

ÅThis approach has inherent inefficiencies in the use
of our resources. Software that is already changed
is still having resources applied to it.

10

This is a non-ITAR presentation, for public release and reproduction from FSW website.

The Paradigm Shift

The Software
Team

The
Customer

Requirements

Delivered Code

11

This is a non-ITAR presentation, for public release and reproduction from FSW website.

The Fundamental Changes

The Goal: Greatly reduce the amount of resources (time, people,
risk) it takes to translate a needed change into a delivered
product.

Fundamental Change #1: Design it so that it can be automated.

Fundamental Change #2: Design it so that it can be measured.

12

This is a non-ITAR presentation, for public release and reproduction from FSW website.

Design it so that it can be automated

Mindset #1: Computers run tests not humans.

Å Every project I had worked on until ATLAS had testers run their own tests, or at the very least, a knowledgeable
tester would run a fellow tester’s test. This ties the very expensive human resource to an otherwise inexpensive
process of executing a test.

Å If I want to run tests 24/7 continually for the life of the project, and I want to run them concurrently on three
different strings; then it becomes a logistical staffing problem to have people support those tests. It must be
automated. Computers run tests, not humans.

Å Tests that are not written from the beginning to be autonomous almost never can be executed autonomously.
The way the test is written needs to be designed from the beginning as an autonomous test.
Å It can never halt
Å It must check all error conditions itself and report them centrally in the end
Å It must make any branching decisions on its own
Å The test bed infrastructure must support anything the test wants to do (no probing, no pushing buttons)

13

This is a non-ITAR presentation, for public release and reproduction from FSW website.

Design it so that it can be automated

Mindset #2: Running all the time means handling all failures.

Å The test infrastructure needs to be able to handle gross failures like computers crashing, tests timing out, things
getting corrupted.

ÅWhen we are used to running tests as discrete activities, if a test inadvertently causes EEPROM to get corrupted,
then the next time we run a test we see a failure, we investigate, notice the EEPROM corruption and fix the
problem. We lose maybe one test cycle. If we are running dozens of tests an hour, and the tests are run
unattended, having one test leave EEPROM corrupted will cause dozens and dozens of tests to fail and the loss of
a great amount of test time.

Å Computers crashing used to be a valid excuse for why there is a delay in a development/test effort. But if you
start to scale your test operation to 24/7 and start utilizing multiple strings, then handling failures become a part
of normal operating procedures.

14

This is a non-ITAR presentation, for public release and reproduction from FSW website.

Design it so that it can be automated

Mindset #3: Computers are bad at ambiguity.

ÅWhen humans run tests, we can be relied on to make fairly descent judgment calls when things are ambiguous.
We’re good at thinking on the fly, investigating, and resolving issues. Computers are horrible at ambiguity.

Å As a result, every operation must unambiguously succeed or fail. Nothing in between. Every telemetry point
checked has to have an acceptable range. Plots can’t be analyzed later. The test system must trend towards a set
of assertions and away from a set of analysis.

Å The place where this was most practically felt was in command verification.
Å Latency in command/telemetry verification caused more false alarms that any other single source of

reported failures; yet we design our systems with ambiguous command verification techniques like the
command accept and reject counters.

Å If telecommands can be generalized as nothing more than RPCs, do we see similar techniques for RPC
acknowledgements being used in ground systems?

Å Are the reasons (e.g. small telemetry footprint) for command accept/reject counters still valid in the systems
we build today?

15

This is a non-ITAR presentation, for public release and reproduction from FSW website.

Design it so that it can be measured

Mindset #4: Measure how code behaves, not how it works.
ÅWe just talked about running a series of automated tests that verify if the code works. Automated tests map to

requirements and use cases that verify and validate if the code works. If the code passes the test, then it works.
Measuring how code behaves answers the question of does it work all the time.
ÅMy code passes the test when it is run after a test that turns off diagnostic data; does it pass the test when it

is run after a test that turns on diagnostic data.

Å Software of any size cannot have all permutations of inputs checked. To combat this, we measure how it
behaves, all the time, across varying conditions.
Å Does my test system allow enough variation of input (time, event sequencing, axillary inputs) to represent a

fair set of the real world it will be delivered into.
Å Have I instrumented the test system sufficiently in order to tell if expectations of a behavior are being met.

Å It is a continuous measure of behavior, not a discreet test of correctness. For instance, if I have an expectation
that packets are never corrupted; instead of just writing a test that maps to a requirement that analyzes a set of
data to see if the CRCs are correct, also setup a ground processing tool that continuously monitors every packet
that is produced by the flight system, and alerts the team for any failed CRC check.

16

This is a non-ITAR presentation, for public release and reproduction from FSW website.

Design it so that it can be measured

Mindset #5: Maximize the time a behavior has been measured.

Å The way we are going to be able to deliver software to an observatory that was changed only a few days ago, or
even hours ago, and still have tremendous confidence in its reliability and stability, is by maximizing the amount
of time every behavior in the code is measured.

Å For any release of code, we could in theory enumerate all of the behaviors that the code exhibits. We then in
theory could enumerate all of the behaviors our test system measures. We could then ask, how long has each
behavior in the code been measured by our test system?

Å If this is what we are trying to maximize then it is in our best interest to immediately begin measuring a behavior
as soon as possible. Testing an outdated piece of code via the original “walled” method is counter productive and
leads to less reliable and stable code.

17

This is a non-ITAR presentation, for public release and reproduction from FSW website.

Example of automation/measuring benefits

Behavior Date Added Days tested if testing
started 3/10/15 and code
released 4/1/15.

Days tested of testing
started right away and
code released 3/10/15.

Time stamps increment by one second for
each second that passes.

11/2/2014 22 days 128 days

The temperature of fixture A is held to 10C
+/- 1C.

1/15/2015 22 days 54 days

The instrument manager No-Op command
increments the command counter by one.

1/30/2015 22 days 39 days

A single event upset in memory is corrected
and reported in telemetry.

3/4/2015 22 days 6 days

Å I can target my resources to mitigate the risk of recent changes, but there is
nothing I can do to reclaim lost test time.

ÅConsider the difference in test time if the first approach doesn’t include
continuous measurements and only tested requirements discreetly.

18

This is a non-ITAR presentation, for public release and reproduction from FSW website.

The Updated Paradigm Shift

The Software
Team

The
Customer

Requirements

Flight Software
Automated Test Infrastructure

Continuous Measurements

Test Bed

Test Results
History of Performance
Tested Flight Software

Delivered Code

Change from building and delivering software to building a
development/test bed that delivers software

19

This is a non-ITAR presentation, for public release and reproduction from FSW website.

The Updated Paradigm Shift

The Software
Team

The
Customer

Requirements

Flight Software
Automated Test Infrastructure

Continuous Measurements

Test Bed

Test Results
History of Performance
Tested Flight Software

Delivered Code

The take away lesson I see from DevOps practices is to invest in the above
development “engine”. Instead of focusing on producing a great software

product, we focus on producing a great software producing product.

The
DevOps
Engine

20

This is a non-ITAR presentation, for public release and reproduction from FSW website.

Practical Lessons Learned

1. Data Centric Test Bed
2. Desktop Simulation Environment
3. Test to Trunk
4. Owning the GSE

5. STOL testing language
6. Manual data versioning
7. The plight of timeouts in command verification
8. The behemoth test procedure

Four Steps in the Right Direction

Four Steps in the Wrong Direction

21

This is a non-ITAR presentation, for public release and reproduction from FSW website.

Test
Scripts

Local
Storage

Device
Under

Test

GSE/Test
Harness

Commands

Telemetry

Real-Time
Status & Control

Workstation

Workstation

Data Processing

Pull

Lesson #1: Data Centric Test Bed

High Rate
Test and
One-Off
Debug Data

We started out connecting our workstations directly to our GSE.

22

This is a non-ITAR presentation, for public release and reproduction from FSW website.

Test
Scripts

Local
Storage

Device
Under

Test

GSE/Test
Harness

Commands

Telemetry

High Rate
Test and
One-Off
Debug Data

Real-Time
Status & Control

Workstation

Workstation

Data Processing

Pull

- Single board computer
hosting flight software

- Signal processing
boards

- Spacecraft bus
- Fast steering mirror

and mechanism

- Custom logic boards
- 1553 bus controller
- Digital I/O cards
- Dynamic orbit simulation

- Excel
- MATLAB
- SciLab
- Python

- ASIST
- ITOS
- GSEOS
- COSMOS
- AstroRT

Lesson #1: Data Centric Test Bed

23

This is a non-ITAR presentation, for public release and reproduction from FSW website.

Test
Scripts

Local
Storage

Rad750 /
Leon3FT

GSE/Test
Harness

Commands

Telemetry

ITOS

Workstation

Workstation

Excel/Python/Scilab

Pull

Å Test scripts are
not aware of
processing results

Å Test harness local
storage is often
organized by test
identification, or
user filename
choice Å On a separate computer

performance results are
organized by test identification

Communication between
team members was through
email either pointing to or

sending files

High Rate
Test and
One-Off
Debug Data

We started out with files and emails…

Lesson #1: Data Centric Test Bed

24

This is a non-ITAR presentation, for public release and reproduction from FSW website.

An example work flow from how we started:
Å The 1553 remote terminal test is written in STOL and executes

on the ITOS workstation.
Å The 1553 bus controller residing in the test harness is

instrumented to capture all of the time stamps of 1553 telemetry
responses it receives and write them to a local file.

Å The person running the tests sees a problem in a response coming too
soon and copies the file with the time stamps on the test harness to a thumb drive
and then emails the file to the developer of the remote terminal task.

Å The developer has a few questions and emails the tester and asks where the STOL test script log
file is on the ITOS workstation.

Å The test is run a few more times, each producing more time stamp files and more log files to keep
track of.

Å A couple of them get posted to our bug tracking server; others reside only in emails.

Lesson #1: Data Centric Test Bed

25

This is a non-ITAR presentation, for public release and reproduction from FSW website.

Test
Scripts

Data
Archive

Rad750 /
Leon3FT

GSE/Test
Harness

Commands

Telemetry

All traffic

ITOS

Workstation

Workstation

Excel/Python/SciLab

Data Server

Lesson #1: Data Centric Test Bed

Å Nothing went to our test bed or came from
our test bed that wasn’t archived in a time
series database.

Å It is always on and stores everything.

Å It supports an unlimited (except by system
resources) number of connections to either
receive a real-time stream, receive the
results of a query, or connect as a data
source. 26

This is a non-ITAR presentation, for public release and reproduction from FSW website.

Test
Scripts

Data
Archive

Rad750 /
Leon3FT

GSE/Test
Harness

Commands

Telemetry

All traffic

ITOS

Workstation

Workstation

Excel/Python/SciLab

Data Server

Lesson #1: Data Centric Test Bed

Å Nothing went to our test bed or came from
our test bed that wasn’t archived in a time
series database.

Å It is always on and stores everything.

Å It supports an unlimited (except by system
resources) number of connections to either
receive a real-time stream, receive the
results of a query, or connect as a data
source.

Workstation

Continuous Data
Monitor

27

This is a non-ITAR presentation, for public release and reproduction from FSW website.

Test
Scripts

Data
Archive

Rad750 /
Leon3FT

GSE/Test
Harness

Commands

Telemetry

All traffic

ITOS

Workstation

Workstation

Excel/Python/SciLab

Data Server

Lesson #1: Data Centric Test Bed

Å Nothing went to our test bed or came from
our test bed that wasn’t archived in a time
series database.

Å It is always on and stores everything.

Å It supports an unlimited (except by system
resources) number of connections to either
receive a real-time stream, receive the
results of a query, or connect as a data
source.

Workstation

Continuous Data
Monitor

Å Data from continuous data monitoring/processing
can be fed back to data server and distributed back
to ITOS for script awareness

28

This is a non-ITAR presentation, for public release and reproduction from FSW website.

Lesson #1: Data Centric Test Bed

What this allowed us to do:
Å Instead of haphazard local files holding instrumented data…

create packet and telemeter it; it will then forever be stored
and available for analysis later – even if the test doesn’t specifically need it

ÅReferencing a time range uniquely identifies data
ÅWe went from trying to manage and version binary files (sometimes quite

large) to using a simple timestamp string like YYYY:DOY:HH:MM:SS

ÅTimestamp strings were very easy to attach to bug tickets and to communicate to other
team members

ÅThe timestamp was a key to finding all the data at the time specified, not just the data
that was locally captured

ÅTools can now be developed around the data server
ÅContinuous monitor tools can be written and attached to the real-time stream
ÅTest scripts can autogenerate “tickets” that have their start and stop time which can then

be used to kick off automated pulls and analysis of collected data.

29

This is a non-ITAR presentation, for public release and reproduction from FSW website.

ATLAS Example: Files to Time Stamps

We had roughly 8,000 algorithm tests that were run against the flight software, which in total produced
about 4TB of results. We were managing each of these test data result sets independently and manually.
The test itself was required to save off the data in a self-describing directory and the test engineers were
responsible for delivering the data to the science team. As the data was copied to various computers it
became difficult to identify which was the “official” data set. Also, if issues were discovered, the data set
was too large to easily transfer for quick analysis and manual intervention was needed to isolate the
offending data.

With the data server architecture we changed from identifying the test data results as a directory of data to
identifying it as a start time and stop time (e.g. “20160602140532” represents the June 2, 2016 at 2:05 p.m.
and 32 seconds). A customer request for test results became a data archive query. The official version of
the test results was the data stored on our data server.

The biggest impact of this change came with how we on the flight software development team began to
identify anomalies in our bug tracking system. Anytime an issue was found, the issue report ended up
specifying the exact time stamp of the problem. From then on, any engineer working on the problem had
only to issue a simple data server query to pull just the data they needed to analyze the problem.

30

This is a non-ITAR presentation, for public release and reproduction from FSW website.

ATLAS Example: Continuous Testing

As a result of the data server always being on, continuously collecting everything, we realized that we could
utilize time on the string that wasn’t being directly used for a test and use it for continuous testing.

Therefore, we developed a dynamic orbit simulation which simulated the environment the flight software
would operate in as if it were in orbit at the current wall-clock time. Then with some simple monitors and
baseline configuration scripts we started leaving the test string “operational” any time it wasn’t being used
for a specific test.

As the project ramped down and the string was less utilized we experienced a 14 day period of time in
which the string was left in “continuous” mode. On day 12 of this period an anomaly occurred which our
test system caught. All data was recorded and we had everything needed to resolve the anomaly.

31

This is a non-ITAR presentation, for public release and reproduction from FSW website.

Lesson #2: Desktop Simulation Environment

We started building a highly capable desktop simulation environment from day one.

32

This is a non-ITAR presentation, for public release and reproduction from FSW website.

Lesson #2: Desktop Simulation Environment

Å The entire development and verification string had a high fidelity port to the Linux desktop.

Å This included flight code, simulations, and GSE. Code was written in a portable way from day one
Å Immune to big endian vs. little endian processors
Å Immune to 32-bit vs 64 bit processors
Å No direct memory access (registers accessed through APIs)
Å Hardware drivers properly layered in the code

Å The port of the flight code went down as low as possible. Code was refactored until the abstraction layers needed to
get it to run on Linux were as small as possible.

Å All hardware GSE had corresponding software simulations so that the test bed code that simulated things like the
orbit and the reflectivity of the earth could run in Linux without the physical hardware being present.

ÅWe fostered a plug and play string architecture. Our design goal was that any hardware should be swappable with a
simulation, and vice versa. This allowed for hybrid setups which we used extensively during integration with real
hardware.

ÅWe developed an in-house marshalling solution (which we called htonp) that auto generated code from preprocessed
header files and supplies packet conversions to network byte order for all transactions over a bus or network. 33

This is a non-ITAR presentation, for public release and reproduction from FSW website.

Lesson #2: Desktop Simulation Environment

Advantages to the desktop simulation:
ÅDeveloping in Linux with gdb, valgrind, profilers, and other desktop tools was much easier than in the

embedded environment.
ÅEveryone has a full string available to them on their desktop for development of their code and test

procedures
ÅMarshalling allowed for a single database definition and allowed us to use the flight ground system

unchanged when running flight test procedures.

How does this apply to DevOps:
Å Just like people are an expensive resource, so are physical hardware strings… minimizing their use for

development maximizes their availability for testing
ÅThe more you can exercise behaviors of the code the more stable and reliable the code will be… we

never replaced official testing with testing on the simulator, but the simulator testing exposed bugs in
the code early in development that would have been hard to find on the embedded system.

34

This is a non-ITAR presentation, for public release and reproduction from FSW website.

Early Algorithm Development: Using the desktop Linux simulation of our code, we took one of our
strings and teamed up with the optical team and supported the optical lab they used to develop the
beam steering mechanism. They could have done everything with MATLAB and a computer, but we
wanted to integrate early with them, so they used both the flight code running on Linux and then on
the flight code running on the Rad750 with everything but the optical components simulated by our
simulator as a part of their optical development system.

Hardware Troubleshooting: We troubleshot one of the hardware cards in the main electronics box
by interfacing our flight code to the board and replacing just that cards simulation with the real card.

Early Science Testing: We supported science testing with the main electronics box by running just our
spacecraft simulation and allowing the rest of the instrument to be the real hardware.

Board Level Thermal Cycling: We performed thermal cycling on the flight signal processing boards
while the full flight software was running with no changes to the flight code. The C&DH (which
usually runs on the Rad750), as well as the rest of the instrument was simulated in our desktop Linux
simulation.

ATLAS Example: Plug and Play

35

This is a non-ITAR presentation, for public release and reproduction from FSW website.

Lesson #3: Testing to Trunk

Target Build 1 Target Build 2Release 1

Develop Build 1 Develop Build 2

Test Build 1 Test Build 2

Develop Build 3

Old
Way

Target Build 1 Target Build 2

Develop Build 1 Develop Build 2

Test Build 1 Test Build 2

Develop Build 3

New
Way

Test Build 3

36

This is a non-ITAR presentation, for public release and reproduction from FSW website.

Lesson #3: Testing to Trunk

Target Build 1 Target Build 2Release 1

Develop Build 1 Develop Build 2

Test Build 1 Test Build 2

Develop Build 3

Old
Way

Target Build 1 Target Build 2

Develop Build 1 Develop Build 2

Test Build 1 Test Build 2

Develop Build 3

New
Way

Test Build 3

Testing code that has changed

37

This is a non-ITAR presentation, for public release and reproduction from FSW website.

Lesson #3: Testing to Trunk

Workflow:

ÅWe still maintained independent testers, but it was not a separate team – there was just the software
team that included both developers and testers.

ÅThe software team had only one schedule – in order to release a build, both the code and the testing
had to be done. As a result flight software and test procedures/infrastructure was developed together
as a single product.

ÅEvery day a tester would checkout the trunk and make sure any testing they did was integrated with the
latest code.

ÅTesters and developers worked together from the beginning. Requirement and design arguments that
usually happen well after the code is written and integrated, were happening right away. Issues were
often found within 24 hours of being introduced.

38

This is a non-ITAR presentation, for public release and reproduction from FSW website.

Lesson #3: Testing to Trunk

Challenges:

ÅThe technical demands/skill set of the tester is significantly greater. Since everything is changing all the
time, they need to fully understand the system at both the development level and the system level.

ÅWhen coordination between the development and test effort break down, there is greater inefficiency
in the test effort as it “chases” the development effort.

ÅThere are inefficiencies when a piece of code changes multiple times due to developer instigated
changes. Tester may drive the changes in which case testing to trunk is good as it speeds this cycle up.

Benefits:

Å Every line of code written has had the maximum amount of test time possible – since it started being
tested after the first day it was written.

Å Collaboration/coordination between development and test team greatly improved.

39

This is a non-ITAR presentation, for public release and reproduction from FSW website.

Lesson #4: Owning the GSE

The development of the real-time simulation of all interfaces, components,
and environments needed by the flight software for development and
verification was done by our flight software team, and was an effort equal in
scope to the flight development.

The test bed development greatly exceeded the scope and complexity of the
flight software development. The flight SLOC was around 90K where as the
GSE SLOC was around 500K. But the significantly looser development
practices for the GSE caused the cost of the efforts to be about the same.

The number one external dependency on schedule and budget of every
software effort I’ve led has not been the requirements but the system
needed to develop and test the code. We cannot afford to give control of
that dependency to anyone else.

40

This is a non-ITAR presentation, for public release and reproduction from FSW website.

Lesson #5: STOL testing language

Å We use the STOL scripting language which comes as a part of the ITOS ground system to write all of our
build and system tests.

Å STOL has been successfully used on flight missions at Goddard for generations.

Å Programming languages manage complexity.
Å Is it expressive? How many lines of code does it take to express a desired behavior?
Å What is its approach to scoping variables?
Å Does support a layered architecture? How is lower level logic encapsulated in higher level blocks?
Å Does it support concurrency and distributed processing?
Å Is there community support?
Å Is it performant when it needs to be?

Å The goal of automating potentially thousands of tests, executing them in a distributed system,
managing failures and collecting/reporting results is not well supported by the STOL language.

Å The ITOS implementation of the STOL language does not have functions.

41

This is a non-ITAR presentation, for public release and reproduction from FSW website.

Lesson #5: STOL testing language

Å Here is a list of programming languages that are globally viewed as robust and expressive:
Å Python
Å Ruby
Å Lua
Å Go
Å Java
Å Swift
Å Scala
Å Clojure

Å We should have chosen one.

42

This is a non-ITAR presentation, for public release and reproduction from FSW website.

Lesson #6: Manual data versioning

ÅThe data server running in our lab stores all the data as opaque blobs of CCSDS
packets.

ÅWhen we go back to analyze past data the question becomes: what was the format of
the packet at that time. We managed this manually – i.e. you look up the VDDs, find
the version that mapped to that time period, and do a pull of the database from SVN
at that time.

ÅThis made it impractical to go back in time… the result was that we rarely go back in
time.

43

This is a non-ITAR presentation, for public release and reproduction from FSW website.

Lesson #6: Manual data versioning

ÅOther systems I’ve used run a database with time indexed meta-data. So tools can
query a database with a time period and get back the packet definitions they need to
process the data.

ÅOr we could have stored version information in the data server itself along side the
data we were collecting.

44

This is a non-ITAR presentation, for public release and reproduction from FSW website.

Lesson #7: The plight of timeouts in command verification

Å If you have a false alarm rate of 1 out of a 1000 runs and you are running a few tests a day
manually, then false alarms are a small problem.

Å If you have the same false alarm rate, but are running a 1000 tests a day, then you are
investigating false alarms every single day.

ÅThe single largest source of false alarms in our test system was a telemetry verification
timing out. The root cause was either a bug in the test procedure where it got “out of
synch” or a network delay that was unexpectedly long.

45

This is a non-ITAR presentation, for public release and reproduction from FSW website.

Lesson #7: The plight of timeouts in command verification

ÅLater in the test effort we implemented a scheme that attached to our full rate data and
verified all commands through a command echo packet. It was significantly more reliable
– yet our flight software design did not support the command echo packet being sent in
nominal flight modes.

ÅQuestion is – are the reasons we use the command accept/reject counter still valid for
the mission we are working on. For ATLAS, the answer was no – we could have used a
different scheme – we just didn’t think about it until much too late.

46

This is a non-ITAR presentation, for public release and reproduction from FSW website.

Lesson #8: The behemoth test procedure

ÅOn ATLAS we had 556 test procedures, making up 262,500 lines (includes comments and
blank lines)

ÅA lot of our build test scripts were over a 1,000 lines; our largest was over 10,000 lines.

ÅThey were hard to review, hard to fully understand, hard to debug

Å If a change was made to a large procedure, it could have a ripple effect

ÅWe had a lot of cases where a large procedure had dependencies inside and outside of
the test that we were not aware of.

ÅGetting all of these large test procedures that tested dozens of requirements each and
took sometimes hours to run themselves, to work all the time without hiccups, was
challenging. 47

This is a non-ITAR presentation, for public release and reproduction from FSW website.

Lesson #8: The behemoth test procedure

ÅLater in the project we had to implement a large set of algorithm tests (~8000 tests
mostly made up of permutations on about 20 underlying test cases).

ÅFrom the very beginning the test engineer in charge developed a test framework that
read in small test descriptions and executed each test. The framework was responsible
for:
ÅTest setup (making sure things were in a known original state)
ÅTest execution
ÅTest reporting

ÅWe were able to run thousands of these tests all the time with no hiccups.

ÅWhen a test asserted itself as failing, we could drive down right to that specific test,
understand immediately what we were looking at and resolve the problem there.

48

This is a non-ITAR presentation, for public release and reproduction from FSW website.

Test 1

Lesson #8: The behemoth test procedure

Å This is a solved problem:
Å COSMOS has the Test Runner
Å cFS has a branch that implements a Lua build test framework
Å Unit test frameworks abound that implement this type of functionality

Å Managing the test scripts goes from a technical problem of understanding the intricacies of each of the test
procedures to a management problem of maintaining the list of “good” test blocks that can safely be inserted into the
build test list.

Joe’s big test
procedure for

task A

Jane’s big
test

procedure for
task B Bob’s big test

procedure for
task C

One-time developed reliable
test framework

Test 1
Test 1

Test 1
Test 1

Tests …

New Tests

Proven
Tests

Vetting

49

This is a non-ITAR presentation, for public release and reproduction from FSW website.

Lessons Learned from a DevOps Approach

Å Invest in the engine that produces the product

ÅDesign it so that it can be automated
(computers run tests, not humans)

ÅDesign it so that it can be measured (maximize
the amount of time each behavior in the code
has been measured)

ÅGood things: a data centric test bed, a desktop
simulation environment, testing to trunk,
owning the GSE

ÅBad things: the STOL testing language, manual
data versioning, ambiguous command
verification, the behemoth test procedure.

50

This is a non-ITAR presentation, for public release and reproduction from FSW website.
51

ATLAS – Advanced Topographic Laser Altimeter System
CRC– Cyclic Redundancy Check
EEPROM– Electronically Erasable Programmable Read Only Memory
GSE– Ground Support Equipment
PID– Proportional-Integral-Derivative
PROM– Programmable Read Only Memory
RPC– Remote Procedure Call
SLOC– Source Lines of Code

Acronym List

