
© 2009 Carnegie Mellon University

Software in System

Engineering: Affects on

Spacecraft Flight Software

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

Charles (Bud) Hammons, PhD
Mary Ann Lapham
Nov 4, 2009

2
2009 Spacecraft Flight Software Workshop

Hammons/Lapham, Nov 2009

© 2009 Carnegie Mellon University

Introduction

Issues Resulting from Software/Systems Relationship

• Early identification/mitigation of software engineering issues

• Traditional system engineering inappropriate to incremental development
environments

• Inter-increment dependencies

• Unprecedented software integration complexity

• Software architectures

Summary

Contact Information

Agenda

3
2009 Spacecraft Flight Software Workshop

Hammons/Lapham, Nov 2009

© 2009 Carnegie Mellon University

What is the relationship Software/System Engineering??

• Historically, software is considered an “implementation detail”

• Software considered late in system lifecycle

• An alternative view – software and system engineering need to work
collaboratively from start of development

Not here to debate either premise but to look at impacts

Historic approach causes or exacerbates many issues

Introduction

4
2009 Spacecraft Flight Software Workshop

Hammons/Lapham, Nov 2009

© 2009 Carnegie Mellon University

Software engineering issues appear or start early in programs

• Space programs typically have ground and spacecraft components/segments

• Most times segments treated separately

Miss system level software engineering issues or get misconceptions
and disconnects between segments

• Requirements

– Interpretation is key

– Segment versus system could be inconsistent resulting in non-
interoperable designs and implementations

– Need system software team involved in technical oversight

Early Identification/Mitigation of Issues1

= potential solution

5
2009 Spacecraft Flight Software Workshop

Hammons/Lapham, Nov 2009

© 2009 Carnegie Mellon University

Miss system level software engineering issues or get misconceptions
and disconnects between segments (continued)

• Defining or declaring operational configuration

– Different perspective from ground and spacecraft

– Need to know static structure of system? Known defects?

– Deployed, development, and maintenance configurations

– Roll back information

– Coordinated and interdependent high-level software design decisions

– Define maintenance model early including explicit use cases to avoid
inviting shortfalls in capability

Early Identification/Mitigation of Issues2

6
2009 Spacecraft Flight Software Workshop

Hammons/Lapham, Nov 2009

© 2009 Carnegie Mellon University

Miss system level software engineering issues or get misconceptions
and disconnects between segments (continued)

• Life-cycle costs

– Effect on software complexity, costs, etc vetted where

– Segments have different view than system

– Potential higher costs especially during operations/maintenance

– System wide role to integrate all the various software costs to ensure
correctness, completeness, and consistency

• Testing

– System versus segment testing

– Spacecraft interested in edge-to-edge (within segment)

– System interested in end-to-end

– Include both positive and off-nominal paths

– Coordination of segment and system views and plans essential

Early Identification/Mitigation of Issues3

7
2009 Spacecraft Flight Software Workshop

Hammons/Lapham, Nov 2009

© 2009 Carnegie Mellon University

Merging traditional system engineering with incremental development

• Satellite constellations may be done in increments

• User expectations can change and grow between increments

• Requirement, configuration, and version interdependencies need to be well
understood

• Allocation between hardware and software may change across increments

• Institute concurrent development approach

• Provide venue for cross-domain systems engineering issues

Traditional System Engineering with
Incremental Environment

8
2009 Spacecraft Flight Software Workshop

Hammons/Lapham, Nov 2009

© 2009 Carnegie Mellon University

Each increment considered entire system unto itself

Subsequent increments treat previous increments as legacy systems

Infers set of parallel or staggered development efforts

• Set of artifact needs

• Places unexpected strains on resources (shared or not) and development
teams

Strategies vary for individual programs

Design each increment to be modifiable (solutions must be able to be
modified and extended)

Inter-increment dependencies

9
2009 Spacecraft Flight Software Workshop

Hammons/Lapham, Nov 2009

© 2009 Carnegie Mellon University

Major integration risk for 107 or more equivalent lines of code

Risk will surface in later stage integration and test

• Usually when program vulnerable due to schedule and cost experience
versus early promises

Empanel vigorous systems integration team

• Beginning of program

• Charged to address downstream integration issues including software
integration

Institute cross-program configuration control at requirements level to aid
in managing one of the primary drivers of complexity growth

Institute test and integration teams charged with ensuring that
dependencies are properly tested and existing operational capabilities
not interrupted

Test early and often

Unprecedented software integration
complexity

10
2009 Spacecraft Flight Software Workshop

Hammons/Lapham, Nov 2009

© 2009 Carnegie Mellon University

Multiple increments leads to potential different architectures for each
increment or satellite in a constellation

Design variations may be needed to mitigate deltas – some in hardware
but some in software

Coordination across prime items between segments required

• Messages exchanged across segments may have different results on various
increments

• Configuration control difficult when CCB oversight spans development,
sustainment, and multiple contracts

Leveraging COTS across increments may change architectures

• Variable nature of COTS releases

• Different functionality available, evolution in interfaces

Integrate early and often

Enable strong communication and collaboration

Software architectures

11
2009 Spacecraft Flight Software Workshop

Hammons/Lapham, Nov 2009

© 2009 Carnegie Mellon University

Early attention to software engineering is critical in reducing software
risk throughout the program’s lifecycle

Issues manifest in all phases of the lifecycle – requirements,
development, test and integration

Solutions include:

• Need system software team involved in technical oversight from program
inception

• Ensure high level software decisions are coordinated across segment and
contractual boundaries

• Provide venue for cross-domain systems engineering issues, e.g. combined
software and systems CCB

• Modifiable solutions

• Test and integrate early and often

• Enable strong communication and collaboration

Summary

12
2009 Spacecraft Flight Software Workshop

Hammons/Lapham, Nov 2009

© 2009 Carnegie Mellon University

Contact Information Slide Format

Mary Ann Lapham/Bud Hammons

Senior Member Technical Staff

Acquisition Support Program

Telephone: +1 412-268-5800

Email: info@sei.cmu.edu

U.S. mail:

Software Engineering Institute

Customer Relations

4500 Fifth Avenue

Pittsburgh, PA 15213-2612

USA

World Wide Web:

www.sei.cmu.edu

www.sei.cmu.edu/contact.html

Customer Relations

Email: customer-
relations@sei.cmu.edu

Telephone: +1 412-268-5800

SEI Phone: +1 412-268-5800

SEI Fax: +1 412-268-6257

mailto:info@sei.cmu.edu
http://www.sei.cmu.edu/
http://www.sei.cmu.edu/contact.html
mailto:customer-relations@sei.cmu.edu
mailto:customer-relations@sei.cmu.edu
mailto:customer-relations@sei.cmu.edu

