Interferometry on the Laser Interferometer Space Antenna

Kirk McKenzie

Caltech Postdoctoral Fellow
Jet Propulsion Laboratory,
California Institute of Technology

FSW December 2010, Caltech
Gravitational waves - a new way to sense the universe.
New technologies, new observatories

Laser Interferometer Gravitational-wave Observatory

Laser Interferometer Space Antenna
• The Laser Interferometer Space Antenna - (LISA)

• NASA - ESA observatory

• 3 spacecraft, Heliocentric orbit

• 2025 Launch
Overview

- Sources
- Detectors
- LISA overview
- Laser and clock frequency noise
- LISA Pathfinder
Overview

• **Sources**

• Detectors

• LISA overview

• Laser and clock frequency noise

• LISA Pathfinder
Gravitational waves

- Oscillations of space-time
 - Generated by accelerating masses
 - Interact weakly with matter

- Astronomy & Physics
 - High energy relativity
 - Galaxy formation
 - Early universe cosmology
 - Dark energy
 - ?

- No direct detection of GW yet!
 - Indirect evidence for GW
 - Hulse and Taylor, pulsar timing

Orbital decay of B1913+16. Red dots are observations; blue line is prediction of general relativity.
Sources: *predictable*

- **Galactic compact binary mergers:**
 - Black hole
 - Neutron star
 - White dwarf

- **Extreme mass-ratio inspirals:**
 - Compact objects falling into galactic BH
 - Precision test of general relativity, “no hair” theorem
Sources: powerful

- Massive BH - Massive BH binaries:
 - Galatic BH merge when galaxies collide
 - 10^4 - 10^7 solar masses
 - 10^{49} Watts
 - High energy relativity
 - SNR > 100

- Back to protogalaxies, $z = 15-20$
- Galaxy formation
- One signal per week
Compact Binary

Large black hole:
shown to scale
250 solar masses
80% maximal spin

Small black hole:
shown enlarged
1.4 solar masses
no spin

Trace duration:
10 seconds

Credit: Steve Drasco
Max Planck Institute
for Gravitational Physics
(Albert Einstein Institute)
sdrasco@aei.mpg.de
Extreme mass ratio inspiral

Large black hole: shown to scale
3,000,000 solar masses
90% maximal spin

Small black hole: shown enlarged
540 solar masses
negligible spin

Trace duration: 1 day

Credit: Steve Drasco

Steve Drasco
Max Planck Institute
for Gravitational Physics
(Albert Einstein Institute)
sdrasco@aei.mpg.de
LISA’s view

• LISA signal is a time series

Simulated signal for the merger of a massive black hole binary at $z = 15$

• Compact binaries in Milky Way & Magellanic clouds (red)

Simulation of a gravitational wave sky as seen by LISA

• Massive BH binaries & EMRI’s in distant galaxies (blue and yellow)
Overview

- Sources

- Detectors

- LISA overview

- Laser and clock frequency noise

- LISA Pathfinder
Direct detection: *measure changing length*

- Measure changing distance between freely falling masses

- Gravitational wave amplitude characterized by strain:

\[h = \frac{\Delta L}{L}, \]
Source amplitude exaggerated by ~10^{20} times
Direct detection: *measure changing length*

- Measure changing distance between freely falling masses

\[
h_+ \quad t = 0 \quad t = T/4 \quad t = T/2 \quad t = 3T/4 \quad t = T
\]

- Gravitational wave amplitude characterized by strain:

\[
h = \frac{\Delta L}{L}
\]

- Two ways to improve detector sensitivity -
 1) Improve measurement precision,
 2) Increase Length
Ground-based detectors

LIGO, USA

VIRGO, Italy

GEO, Germany

TAMA, Japan
Ground-based detectors

- Michelson Interferometers,
 - Kilometer scale,
 - Incredible precision.
 \[10^{-19} \text{ m/rtHz @ 100Hz}\]
 - Seismic and newtonian gravity noise limit detectors to > 10Hz
 - Shot noise

- Advanced detectors 2015
 - 10 times more sensitive
 - 1 detection per week
Going to space:

largest signals, long arm lengths, quiet

- **Largest sources are below 10mHz**
 - Earth is too noisy below 10Hz,
 - LISA’s drag-free system gives good displacement noise performance

- **Signal scales linearly with arm length**
 - Space has “free” vacuum, can make arm lengths very long
 - LISA’s arm lengths (5×10^9 m) optimized for 3mHz

- **Noise scales inversely with laser power** - quantum noise
 - Both ground- and space-detectors limited by laser power
Ground and space: complimentary detectors

- Massive Black Hole Coalescence
- Rotating NS
- Extreme Mass Ratio Inspiral
- Unresolved Galactic Binaries
- Resolved Galactic Binaries
- NS-NS and BH-BH Coalescence
- SN Proto-NS
- Advanced LIGO
Overview

- Sources
- Detectors
 - LISA overview
- Laser and clock frequency noise
- LISA Pathfinder
LISA Constellation

- LISA has 3 arms and thus can measure both GW polarizations.

- Orbits chosen to passively maintain spacecraft formation.

Directional sensitivity through motion of constellation.

- Amplitude modulation from detector rotation.
- Frequency modulation through Doppler shifts.
- ~tens of arcminutes direction depending on source frequency and SNR

- Constant solar illumination provides a benign thermal environment.
LISA: Six one-way inter-spacecraft measurements

- 2 proof masses per S/C
 one for each sensitive direction
 Drag free operation

- 2 lasers per S/C

- 6 one-way inter-spacecraft phase measurements

- Local phase measurements

- All phase measurements sent to ground
 - Combined in post-processing
Gravitational Reference Sensor

- Capacitive sensors and actuators monitor and feedback proof mass position and orientation.

- Optical fibers provide UV light to discharge the PM.

- LISA acceleration noise:
 - \(\sim 10^{-15} \text{ m/s}^2/\sqrt{\text{Hz}} \) @ 1 mHz

- 40 mm Gold-Platinum cubical proof mass.

- Proof mass sits inside electrode housing. No mechanical contact.
Micro-Newton Thrusters

- Thrusters allow the spacecraft to track proof mass motion in the sensitive direction.
 - Push back against the solar wind.
 - Maintain spacecraft orientation.
- Micro-Newton thrusters for LTP based on Field Emission Electric Propulsion (FEEP)
- NASA-JPL are developing colloid micro-Newton thrusters.

Colloid micro-Newton Thruster
LISA control: spacecraft follows 2 masses at once

1: Move the spacecraft and center the masses along laser beams
LISA control: spacecraft follows 2 masses at once

1: Move the spacecraft and center the masses along laser beams
1: Move the spacecraft and center the masses along laser beams
LISA control: spacecraft follows 2 masses at once

1: Move the spacecraft and center the masses along laser beams
LISA control: spacecraft follows 2 masses at once

2: Re-center the masses at 90° from the laser beam
LISA control: spacecraft follows 2 masses at once

2: Re-center the masses at 90° from the laser beam
LISA control: spacecraft follows 2 masses at once

2: Re-center the masses at 90° from the laser beam
LISA Interferometry

Two-step approach to measuring proof mass separation.

1. Local interferometry
 (Proof Mass to Optical Bench).

2. Inter-Spacecraft interferometry
 (Optical Bench to Optical Bench).
Heterodyne Interferometry

- One wavelength shift in one optical field produces a one wavelength shift in the beat note.
- No “lock” point. Full fringe readout with large dynamic range.
- LISA beat note ranges from 2 MHz -20 MHz due to doppler shift from spacecraft motion.
- The science signal appears as a milliHertz phase modulation on a megahertz beat signal.
Local Interferometry
Inter-spacecraft Interferometry

- 40 cm telescope
- ~1 Watt transmitted.
- ~10^{-10} Watts received.

- Shot noise of received power is dominant noise source at high frequencies ~$10\ \text{pm/}\sqrt{\text{Hz}}$.

- Pointing fluctuations must be kept to below ~$10\ \text{nrad/}\sqrt{\text{Hz}}$.

- Arm length changes by ±1.5% over a year.
Overview

- Sources
- Detectors
- LISA overviews
- Laser and clock frequency noise
- LISA Pathfinder
LISA needs frequency stabilized lasers

Spacecraft separation measured by laser “ruler”. Laser’s wavelength is analogous to ruler’s tick marks.

Changes in spacecraft separation are indistinguishable from changes in wavelength.

\[
\frac{\delta L}{L} = \frac{\delta \nu}{\nu}
\]
(one armed interferometer)
Common mode rejection in a Michelson Interferometer

Difference between two equal length arms is immune to (common) ruler length changes.

\[
\frac{\delta L}{\Delta L} = \frac{\delta \nu}{\nu}
\]

(Michelson interferometer)

In LISA \(\Delta L \approx 50,000 \text{ km} \)

\(1 \text{ pm}/\sqrt{\text{Hz}} \Rightarrow \frac{\delta \nu}{\nu} < 10^{-20}/\sqrt{\text{Hz}} \)

Best laser: \(\frac{\delta \nu}{\nu} \sim 10^{-8}/\sqrt{\text{Hz}} \) (@ 3 mHz)
3 (maybe 2) steps to reduce frequency noise

1. Pre-Stabilization
 - GRACE optical Cavity
 - Folkner et al. 2010

2. Arm Locking
 - LISA lab

3. Time Delay Interferometry
 - J. W. Armstrong, F. B. Estabrook, and M. Tinto

 - K. McKenzie, R. Spero, and D. Shaddock
Free running laser frequency noise
Ultra-low expansion glass (ULE) optical cavity housed inside layers passive thermal shields.

Temperature stability of ~10 µK/√Hz.

Frequency noise measured by locking two lasers to two independent cavities.

Target frequency stability of ~30 Hz/√Hz has been demonstrated by Mueller, McNamara, Thorpe and Camp
2 Arm Locking

- Sensor: LISA arm \(H(\omega) = (1 - e^{-i\omega \tau}) \)
- \(n \) unity gain points at \(f_{\text{null}} = \frac{n}{\tau} \)
- Sensor phase at null = -90 degrees
• TDI combines phase measurements with appropriate delays to synthesize interferometers that are insensitive to laser frequency noise.

• TDI cancels laser frequency noise due to:
 - Unequal arm lengths
 - Independent clocks,
 But, *retains GW signal*

• TDI also corrects for clock frequency fluctuations
 - Clock noise is transferred between spacecraft by phase modulation of the laser light
Synthesizing a round-trip measurement

- Measurement is (prompt)−(delayed)
- $s(t)$ phase of interference
- $p(t)$ laser phase
- Measurements combined using knowledge of delays

$$s_m(t) = p_1(t) - p_1(t - 2L/c)$$

$$s_{21}(t) = p_1(t) - p_2(t - L/c)$$

$$s_{12}(t) = p_2(t) - p_1(t - L/c)$$

$$s_m(t) = s_{21}(t) + s_{12}(t - L/c)$$
Michelson Interferometer

- TDI “synthesizes” interferometric configurations with equal arm lengths.

Unequal arm length
Michelson interferometer
Output corrupted by frequency noise

Equal arm length
“Michelson interferometer”
Immune to frequency noise
Michelson Interferometer

- TDI “synthesizes” interferometric configurations with equal arm lengths.
- Only one pair of laser beams in each arm.
- TDI combinations formed in post-processing on Earth

Equal arm length
“Michelson interferometer”
Immune to frequency noise
TDI - corrects for different clock rates

- TDI corrects for independent “clocks”

\[
\begin{align*}
 s_{21}(t) &= p_1(t) - p_2(t - L/c) \\
 s_{12}(t+\Delta t) &= p_2(t+\Delta t) - p_1(t+\Delta t - L/c)
\end{align*}
\]

\[
s_m(t) = s_{21}(t) + s_{12}(t+\Delta t - L/c - \Delta t)
\]

- Clock 1
- S/C 1
- Clock 2
- S/C 2
- Light travel
- Clock difference
Sagnac Interferometer

- Counter-propagating beams traverse the same optical path.

(Equal arm length)
Sagnac interferometer
Immune to frequency noise

Gravitational waves response similar to Michelson combination
JPL Interferometry Testbed: Testing TDI in the lab.

- **Sagnac Interferometer**
 - Immune to path noise between S/C
 - Sensitive to proof mass motion

- 2 (rather than 3) independent S/C
 - Each run off own clock

- **Wireless**
 - Only connection is laser link

- **Same signal processing chain as LISA**
JPL Interferometry Testbed:
Testing TDI in the lab.
Testing TDI

Interferometry Test Bed → Phase Measurements → USO Noise Correction → Interpolation → TDI Combination

Time Delay Interferometry

G. de Vine, B. Ware, K. McKenzie, R.E. Spero, W. M. Klipstein and D. A. Shaddock PRL (2010)
JPL Phasemeter

• The phasemeter measures the phases of the photoreceiver signals, comparing them to internal clock (USO) references

• Challenge to measure µcycles in large noises associated with LISA readout

• LISA Phasemeter:
 - JPL is developing the phasemeter for LISA

• The phase measurement system is now at TRL-4, some components at TRL 5-6
JPL Phasemeter

Phasemeter Performance

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measurement limit</td>
<td>1 µcycle</td>
</tr>
<tr>
<td>Linearity</td>
<td>> 1 part in 10^{14}</td>
</tr>
<tr>
<td>Aliasing</td>
<td>< 1 µcycle</td>
</tr>
<tr>
<td>Amplitude sensitivity</td>
<td>< 0.014 µcycle/%</td>
</tr>
<tr>
<td>Quantization noise</td>
<td>< 0.1 µcycle/√Hz</td>
</tr>
<tr>
<td>Frequency slew rate</td>
<td>758 kHz/s</td>
</tr>
<tr>
<td>Track Doppler</td>
<td>2-18 MHz</td>
</tr>
<tr>
<td>Laser phase-locking</td>
<td>< 10 µcycle @ 139 pW</td>
</tr>
</tbody>
</table>

Phasemeter Features

- Multi-tone tracking
- FPGA FFT automatic tone acquisition
- Automatic gain control
- ADC jitter removal
- PRN ranging (2010)
- Optical communications (2010)
Overview

• Sources

• Detectors

• LISA overviews

• Laser and clock frequency noise

• LISA Pathfinder
LISA PathFinder

- To demonstrate critical LISA technologies in a space environment:
 - Gravitational Reference Sensing
 - Drag-free attitude control
 - Micro-Newton thrusters
 - Interferometry with free-falling mirrors
- LPF is scheduled to launch in 2013.
- 2 months later 6 months science operations begin.
- Vega Launcher

Credit: ESA
LISA PathFinder

Shrink a LISA arm to fit inside one spacecraft.

Engineering model of optical bench.

LISA PathFinder Optical path length noise
LISA PathFinder

![Proof Mass](image1)

![Electrode housing and electrodes](image2)

![Graph](image3)

acc. noise [ms²/Hz]

- LTP
- LTP ifo EM
- LISA
LISA’s future is bright

• Astro2010 decadal committee recommends LISA as one of two large space missions to be implemented this decade (behind WFIRST).

• The report praises LISA as

"a gravity wave observatory that would open an entirely new window in the universe",

whose

"recommendation and prioritization reflect its compelling science case and the relative level of technical readiness"
Summary

• Spectacular, rich science
 • Many sources, high SNR observable throughout the universe.
• Mature design, technology is well advanced
• Eagerly awaiting start of major mission funding.

• ASTRO 2010 Report recommends:
 Start 2016, launch ~2025

• LISA interferometry group at JPL
 Bob Spero, Brent Ware, Daniel Shaddock, Glenn de Vine, Kirk McKenzie and Bill Klipstein
End