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Company Background

● Odyssey Space Research LLC
− Established 2003
− Houston TX & Denver CO

● Core Areas
− GN&C algorithms, design, analysis, integration, evaluation, test
− Flight software development, integration, test
− Simulation development, integration
− Trajectory / Mission design, analysis

● Current Principal Projects
− Orion Multi-Purpose Crew Vehicle
− Commercial Crew
− Commercial Resupply Services 1 & 2
− ISS Visiting Vehicle Integration
− Exploration Mission

■ Analysis and design
■ Flight software

− Flight dynamics for mission operations
− Satellites: LEO and beyond
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Company cFS Areas

● NASA Support
− Integrated FSW Simulations

● Project Gateway
● Moon Mission
● ...and others

− New cFS platforms (Xenomai, ARINC 653)
− Orion BFS
− cFS Voting Architecture
− Distributed cFS Integration
− New cFS Apps/Libs

● Commercial Applications
− Integrated FSW Simulations
− DoD test satellite
− Science Satellite
− ...and others
− CFDP cFS Ground Node

● Internal Research & Development
− Integrated FSW Simulations
− Human-in-the-Loop Flight Mockup 

(displays, vehicle & environment sim, 
cFS FSW)
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Company cFS Areas

● Full-stack development
○ BSP, custom drivers, PSP, OSAL
○ Custom cFS applications, libraries
○ C&DH, GNC, and more

● Ground dev/test and operations support
● cFS Training & Consulting

○ Internal and for commercial customers upon request
■ Training classes and materials
■ Templates, guidelines, HOWTO’s

FSW development opportunities growing
Government and Commercial applications

cFS and custom solutions
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Linux Lessons Learned
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● CFS on Linux often run as root to enable 
real-time threads and thread priorities

● Sufficient, but not necessary: Linux allows 
real-time scheduling via other means
○ Capabilities (CAP_SYS_NICE)
○ Resource limits (RLIMIT_RTPRIO)

● Principle of least privilege suggests using one of 
these methods instead of running as root

Real-time Threads without root

http://man7.org/linux/man-pages/man7/capabilities.7.html
http://man7.org/linux/man-pages/man2/getrlimit.2.html
https://en.wikipedia.org/wiki/Principle_of_least_privilege
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Real-time Threads without root: 
Which Method? 

● CAP_SYS_NICE
○ Pro: less change to CFS code
○ Con: not as easy to use in development

■ Set per file, cleared if file is replaced (e.g. recompiled)
■ Setting effectively requires root

● RLIMIT_RTPRIO
○ Pro: easier for development use

■ Can be set per-user with common pam_limits tool
■ Recompiling doesn’t affect it

○ Con: requires small PSP patch
■ Must request raise to limit for running process

● OSR is testing RLIMIT_RTPRIO
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Real-time Threads without root: 
A Hitch 

● CFS (POSIX OSAL) assumes root is needed
● Will not try to set priorities if geteuid() != 0
● POSIX doesn’t specify what, if any, permissions 

are needed
● Cannot portably check for permissions
● More portable to try it and see
● POSIX OSAL needs some patches
● posix-ng OSAL does the right thing
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Multicore Scheduling on Linux

● Linux, like many other OSes, implements a 
separate run queue per CPU

● Realtime priorities only used to order processes 
per queue, not globally

● Strict task ordering by descending priority NOT 
guaranteed when tasks are scheduled on 
different CPUs

● Restricting CFS to one CPU will provide the 
expected behavior
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Running CFS alone on a CPU

● Improved real-time performance vs. scheduled 
with other processes

● e.g. run on 4th CPU of 4 (index 3)
● Kernel command line parameters

○ isolcpus=3
■ Exclude the CPU from normal load balancing
■ Deprecated in recent kernels in favor of cpusets, but easier to use

○ irq_affinity=0-2
■ Send interrupts to other CPUs
■ Not supported by all IRQ controller hardware

● Start CFS on CPU 3 with taskset
○ taskset -c 3 ./core-linux

http://man7.org/linux/man-pages/man7/cpuset.7.html
http://www.man7.org/linux/man-pages/man1/taskset.1.html
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Smaller Linux Patches

● pthread_setname_np integration
○ Linux API to set a thread name, similar API on BSDs
○ Visible e.g. in debugger
○ OSAL tasks already have names
○ Add to OS_TaskCreate to associate task name with 

thread
● Protect ES PerfLog with semaphore

○ Symptom: data corruption in performance logs
○ Multi-thread issue: ES tries to lock interrupts; impossible 

on Linux
○ Protect with an OSAL semaphore instead
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Smaller Linux Patches

● Sub-microsecond timestamp resolution in PSP 
TimeBase API
○ Used in CFE ES PerfLog
○ Linux exposes nanosecond-resolution timestamps
○ PSP uses an OSAL function which rounds to 1 µs
○ Fix: use the clock_gettime function directly instead, 

tweak resolution parameters appropriately
● Fix for message queue leak

○ Call mq_unlink immediately after mq_open
○ Implemented in posix-ng
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APIs for Potential Future Use

● procfs
○ Linux virtual file system
○ Exposes many system statistics
○ e.g. /proc/stat has both per-core and aggregate CPU 

usage info; may be useful in Health & Status app
● dl_iterate_phdr

○ Linux extension to inspect dynamic libraries
○ Could be used to implement missing POSIX OSAL 

features
■ OS_SymbolTableDump
■ OS_ModuleInfo

○ Also implemented by some BSDs
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cFS on RTEMS

Lessons Learned
and Software Updates
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● Mission:
○ Cobham UT700 LEON3FT 32-bit SPARC v8 processor
○ cFS: 6.5.0a (released cFS applications, etc.)
○ Objective: Minimal changes to cFE, existing cFS apps
○ RTEMS pre-5.1, goal: RTEMS 5.1 official release
○ RTEMS OSAL
○ Custom: BSP, PSP, cFS custom mission-specific apps

● Dev env:
○ Linux on x86-64 (pc-linux PSP & POSIX OSAL)
○ Smoke tests with full stack on QEMU/LEON3

■ RTEMS, BSP, PSP, RTEMS OSAL, cFE, cFS apps (limited I/O, storage)

○ LEON3 dev hardware running full stack

cFS & RTEMS Deployment
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cFE Updates

● cFE 6.5.0a open-source release
○ Bugfix: CFE_ES_ShellOutputCommand()

■ was limited to 4 chars, fixed to support CFE_ES_MAX_SHELL_CMD

○ ccsds.h command secondary header assumed uint16
■ Alignment-sensitive platform: tweaked to be uint8[2] and updated macros

○ Bugfix in cFE SB unit test & minor tweak to unit test 
#includes
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● CF (CFDP File Transfer), starting from v2.2.1
○ Made configurable: incoming PDU message limit
○ Fixed HK throttling semaphore count, supports all OSALs

■ OS_CountSemGetInfo() doesn’t always return count (POSIX, RTEMS 
tested)

○ Added wrappers to call OSAL/PSP, not direct POSIX calls
■ printf ->OS_printf, fopen -> OS_open, fread, fwrite, stat, etc.
■ time() -> CFE_PSP_GetTime()

○ Bugfixes and cleanup, added unit tests
■ Fixed endian assumptions and data alignment issues (Babelfish 11?)

● Programming assumptions vs processor restrictions (x86 vs. LEON3)

■ Fixed PDU Checksum length error (Babelfish 101?)
■ Removed default behavior “assert calls exit()”
■ Fixed many build warnings

cFS Application Updates: CF
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cFS Application Updates: HS

● Health & Safety (HS), starting from v2.3.1
○ Added RTEMS HS custom layer, no core app changes
○ CPU Utilization for app HK & CPU hogging detection
○ Commands: report per-thread CPU utilization via events

■ Single thread or all threads

○ Created an RTEMS API for thread CPU utilization
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cFS Application Updates: MD, MM

● Memory Dwell (MD), v2.3.1
○ MD_AppData is in header, not source
○ Caused multiple-defined symbols error on LEON3 linker

■ But not on Linux linker

● Memory Manager (MM), starting from 2.4.1
○ Bugfix in MM_DumpMem16ToFile() & 

MM_DumpMem32ToFile() had incorrect stride when 
dumping memory

○ Noted assumptions on 2-byte and 4-byte sized arguments 
and config values
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RTEMS OSAL Update

● RTEMS 5.x, single processor
○ Moved from 4.11.x

● cFE/cFS loading support with RTL
○ With RTEMS OSAL actively preventing missing symbols
○ Ops rule: No unloading/reloading cFS apps

● Supporting cFE 6.5.0a interrupt locks
○ cFE: ES performance monitor, TIME, etc.
○ Tested with OSAL INT locks & task preemption

● Closed out development
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New cFS Support Tools

● MMTool
○ Creates MM load files from binary blobs
○ Useful for loading/patching

● FileCRCTool
○ Generates CRCs on files, or sections of files
○ CRC matches cFE ES CRC
○ Useful for comparing to FM file CRC and CS one-shot 

CRC for memory regions
● pc-linux PSP that syncs with the Linux clock

○ Useful for non-RTOS cFS deployments that need to be in 
sync with Linux system time
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RTEMS+LEON3+cFS
 Lessons Learned

● Data alignment: critical to get right
○ LEON will error with incorrect alignment

■ x86 is less restrictive, (too) easy to develop unportable code

○ Developed data alignment guidelines for cFS app devs
■ Make alignment explicit with OS_ALIGN(n), make padding explicit
■ Use compile-time check for assumptions, used fixed-width types

○ Used compiler warnings on alignment & implicit padding
○ RTEMS OSAL, PSP, BSP - under our control
○ cFE:  SB messages assumed to be 32-bit aligned

■ cFS apps must ensure
■ Some cFE messages have 16-bit natural alignment (cast-align warnings)

○ Beware 64-bit types in messages, tables on 32-bit cFE
○ MM app: The MM_MEM32 is operationally critical
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RTEMS+LEON3+cFS
 Lessons Learned

● Dev env: VMs under configuration control
○ Build bit-identical binaries

● Use the same compiler version on all platforms
○ Kept Linux host GCC same version as RTEMS GCC

● Use all the compiler warnings you can, early
● RTEMS vs cFS conventions: task names

○ 4-char names vs longer cFE/cFS names (RTEMS OSAL map cFE)

● Coordinate your task priorities system-wide
○ RTEMS tasks, OSAL shell task, cFE tasks
○ cFS app main tasks and child tasks

● Optimization (-O2)
○ Affects in-memory tar FS (rtems_bin2c)
○ cFS tables need OS_USED for elf2cfetbl
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RTEMS+LEON3+cFS
 Lessons Learned

● cFS+RTEMS RTL needs embedded symbol table
○ Used two-step link process to embed

● Some linker “help” still required
○ A few additional symbols must be given to linker: libm 

support, strcat, etc. (cFS app support)
○ Optimization: may have to include entire lib (tar FS)

● Don’t leave Earth without your map file
● Console writes: system performance impact

○ Weaning off all that debug goodness on a short schedule?
○ In-memory log solutions: printk(), OS_printf()
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RTEMS+LEON3+cFS
 Lessons Learned

● Always have a SIL with command/telemetry
○ cFS on Linux handy for development
○ But need full-stack SIL for dev testing

● Need engineering UI early
○ Support all dev/test platforms
○ Full cFE/cFS command/telemetry set before custom apps
○ Full-fledged scripting capabilities: test automation, 

checkout support
● Using CFDP?

○ Have a CFDP peer to support dev & test - early
○ We used pc-linux cFS with CF and a cmd/tlm bridge


