

Utilizing SDSoC to Port Convolutional Neural Network to a Space-grade FPGA SOUTHWEST RESEARCH INSTITUTE®

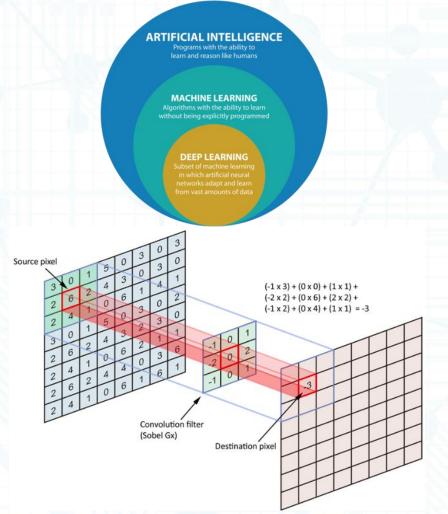
Josh Anderson joshua.anderson@swri.org Southwest Research Institute

his is a non-ITAR presentation, for public release and reproduction from FSW website.

INTELLIGENT SYSTEMS

Objective

- Compress MASPEX instrument data
 Produces ~80MB / sec!
- Port a Convolutional Neural Network (CNN) created for data compression onto an FPGA
 – Downlink only relevant information
- Compare utilization results to a typical space-grade FPGA



his is a non-ITAR presentation, for public release and reproduction from FSW website.

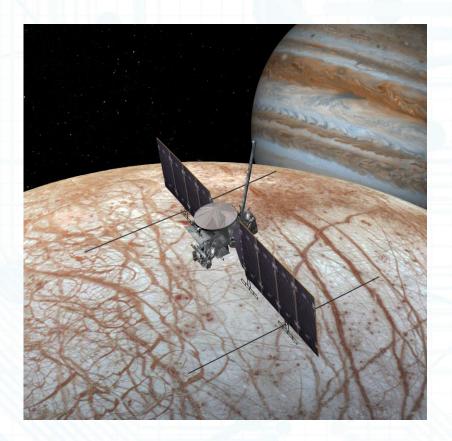
INTELLIGENT SYSTEMS

Convolutional Neural Network SparkNotes

- A deep learning architecture
- Come in many shapes and sizes
- Applications include image recognition, object detection, and signal processing
- Primary operation is convolution on matrices

This is a non-ITAR presentation, for public release and reproduction from FSW website.

INTELLIGENT SYSTEMS

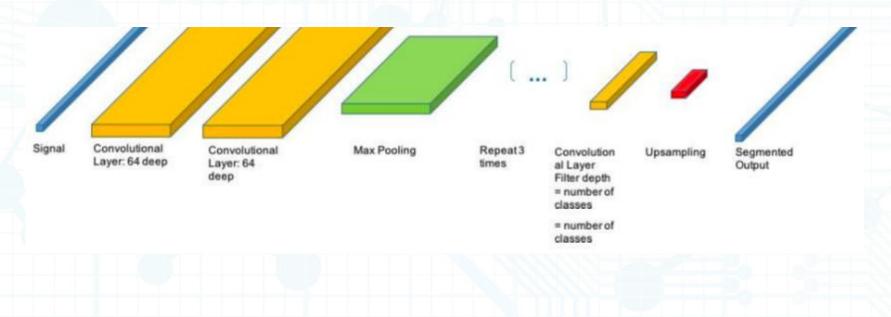

Why Machine Learning on FPGA?

 Massive parallel computing power = Faster processing of data

Low power

Onboard processing

 FPGAs commonly used in space



This is a non-ITAR presentation, for public release and reproduction from FSW website.

INTELLIGENT SYSTEMS

Network Architecture

- Optimized for reduced size
- ID squeeze-net consisting of "Fire modules"
- Weights = 1.5 Mb to 236 Kb

This is a non-ITAR presentation, for public release

and reproduction from FSW website

INTELLIGENT SYSTEMS

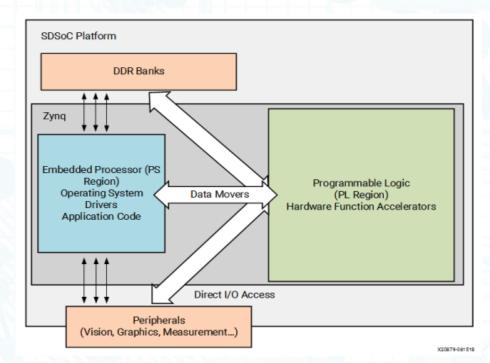
Hardware Implementation – Simple Approach

- Brute force = ineffective
- Prototype small network on Virtex-5 with Verilog
 - I small convolutional layer
 - 32 16-bit inputs and 16 filters
 - Utilization = 108%
- Fixed point still not enough
- Final network has over 20 convolutional layers!

// FILTER Ø

convLayer out0(.x0(x0), .x1(x1), .x2(x2), .w0(w0), .w1(w1), .w2(w2), .b(b0), .y(y0)); convLayer out1(.x0(x2), .x1(x3), .x2(x4), .w0(w0), .w1(w1), .w2(w2), .b(b0), .y(y1)); convLayer out2(.x0(x4), .x1(x5), .x2(x6), .w0(w0), .w1(w1), .w2(w2), .b(b0), .y(y2)); convLayer out3(.x0(x6), .x1(x7), .x2(x8), .w0(w0), .w1(w1), .w2(w2), .b(b0), .y(y3)); convLayer out4(.x0(x8), .x1(x9), .x2(x10), .w0(w0), .w1(w1), .w2(w2), .b(b0), .y(y4)); convLayer out5(.x0(x10), .x1(x11), .x2(x12), .w0(w0), .w1(w1), .w2(w2), .b(b0), .y(y5)); convLayer out6(.x0(x12), .x1(x13), .x2(x14), .w0(w0), .w1(w1), .w2(w2), .b(b0), .y(y6)); convLayer out7(.x0(x14), .x1(x15), .x2(x16), .w0(w0), .w1(w1), .w2(w2), .b(b0), .y(y7));

his is a non-ITAR presentation, for public release

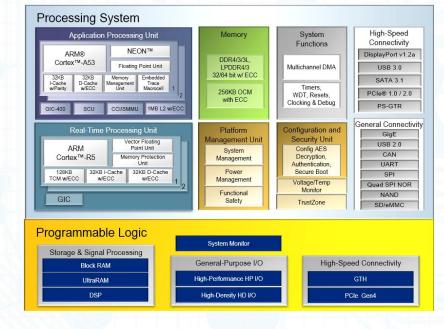


and reproduction from FSW website.

INTELLIGENT SYSTEMS

Solution – SDSoC Software Defined System on a Chip

- Write applications for Multi-Processor System on a Chip (MPSoC) devices
- Synthesizes C/C++ code onto programmable logic (PL) of MPSoC
- Programmable System (PS)
- Programmable Logic (PL)
- Orchestrates moving data between PS and PL


and reproduction from FSW website.

INTELLIGENT SYSTEMS

swri.org

Hardware Implementation – A Better Approach

- Zynq Ultrascale+ MPSoC
- Model as close to a stand-alone FPGA as possible
- Reusable convolutional layer written in C++ synthesized onto PL

This is a non-ITAR presentation, for public release

INTELLIGENT SYSTEMS

©SOUTHWEST RESEARCH INSTITUTE

Utilization Results

- Close to 0 utilization of DSP48E, FF, and LUT cells
- Weights/biases stored in BRAM

Name	BRAM_18K	DSP48E	FF	LUT
Total	706	16	3616	12532
Available	1824	2520	548160	274080
Utilization (%)	39	~0	~0	4

Full-size 1DCNN on Zynq UltraScale+

This is a non-ITAR presentation, for public release and reproduction from FSW website.

INTELLIGENT SYSTEMS

©SOUTHWEST RESEARCH INSTITUTE

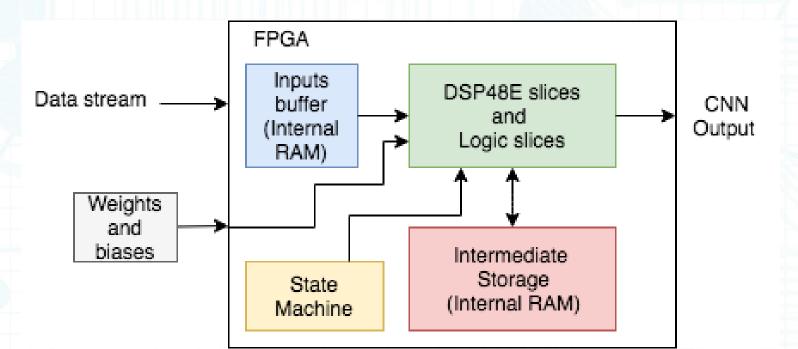
Utilization Results cont.

- 2D network architecture
- Useful for image processing

2DCNN Experimentation

Name	BRAM_18K	DSP48E	FF	LUT
Total	706	28	5046	13927
Available	1824	2520	548160	274080
Utilization (%)	39	1	~0	5

This is a non-ITAR presentation, for public release and reproduction from FSW website.


INTELLIGENT SYSTEMS

©SOUTHWEST RESEARCH INSTITUTE

Hypothetical FPGA Design

- State machine logic replaces embedded processor
- Store weights and biases externally

This is a non-ITAR presentation, for public release

and reproduction from FSW website

INTELLIGENT SYSTEMS

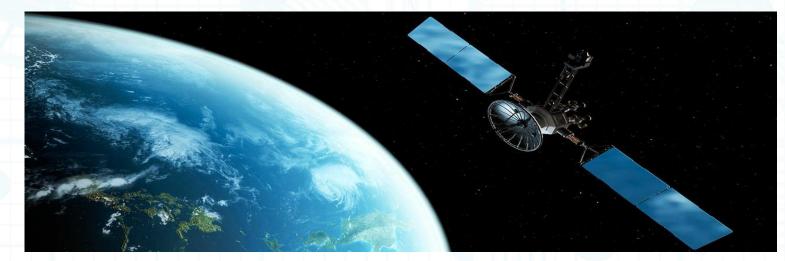
Moving to Space-grade FPGAs

- Rough estimation
- Assumptions:
 - Similar results on DSP48E and LUTs
 - External storage of weights/biases
 - State machine logic not accounted for

Name	BRAM_18K	DSP48E	FF	LUT
Total	706	16	3616	12532
Available	596	320	40960	40960
Utilization (%)	<mark>118</mark>	5	8.83	30.60

Extrapolating to Virtex-5QV

This is a non-ITAR presentation, for public release


INTELLIGENT SYSTEMS

©SOUTHWEST RESEARCH INSTITUTE

Conclusion

- A CNN for data compression could potentially be implemented on a space-grade FPGA
- Network could be used to compress data onboard
 - Reduce required downlink volume
- SDSoC can be used as a tool to prototype and benchmark design
 - Optimize before hardware description language (HDL) implementation

SwRI

This is a non-ITAR presentation, for public release and reproduction from FSW website.

INTELLIGENT SYSTEMS

What's next?

- Move to non-MPSoC implementation (i.e. Virtex 5 FPGA)
- Compare speed and scalability vs GPU
- Improve resource utilization
- Explore higher dimensional data, such as 2D EO/IR imaging and video

This is a non-ITAR presentation, for public release and reproduction from FSW website.

INTELLIGENT SYSTEMS

©SOUTHWEST RESEARCH INSTITUTE

Thanks!

This is a non-ITAR presentation, for public release and reproduction from FSW website.

INTELLIGENT SYSTEMS

©SOUTHWEST RESEARCH INSTITUTE

Sources

- https://www.jpl.nasa.gov/missions/web/europa_full.jpg
- https://www.xilinx.com/support/documentation/data_sheets/ds192_V5QV_Device_ Overview.pdf
- https://www.xilinx.com/support/documentation/data_sheets/ds891-zynq-ultrascaleplus-overview.pdf
- https://www.xilinx.com/content/dam/xilinx/imgs/products/zynq/zynq-cg-block.PNG
- https://www.xilinx.com/support/documentation/sw_manuals/xilinx2018_2/ug1027sdsoc-user-guide.pdf
- https://www.qubole.com/blog/deep-learning-the-latest-trend-in-ai-and-ml/
- https://medium.freecodecamp.org/an-intuitive-guide-to-convolutional-neuralnetworks-260c2de0a050
- https://www.nbcnews.com/mach/video/from-the-cold-war-to-hurricanes-theevolution-of-space-satellites-1097831491829?v=railb&

