
Multicore ARM Processors for
Safety Critical Avionics

Gary Gilliland
DDC-I Technical Marketing Manger

This is a non-ITAR presentation, for public release and reproduction from FSW website. 1

DDC-I Inc.

• Leading provider of mission/safety-critical software
solutions for 30 years.

• Headquarters in Phoenix, AZ
• World-wide presence

• Primary market: Certifiable avionics software

Gary Gilliland

• Technical Marketing Manager at DDC-I

• 25+ years experience in embedded design,
avionics and RTOS

• Electrical Engineering Degree from University of Texas

ARM Integration and Contention
ARM Value
• Highly integrated
• High performance
• Low power
Deos SafeMC for
ARMv8-A Architecture
processors from multiple
manufactures.
• NXP

• i.MX 8
• S32V234
• Layerscape

• Xilinx Zynq Ultrascale+

Image from NXP S32V234 Technical reference manual

What happens to execution of concurrently running tasks on Cores 2-4, if tasks on Core 1
are not “well behaved” ?
Can Execution on Cores 2-4 have bounded WCETs for Safety Critical Tasks?

This is a non-ITAR presentation, for public release and reproduction from FSW website. 3

What would make MC Cert easier?

• If you found a genie in a lamp.

– Private cache per core

– Memory controller per core

– Private memory per core

Is that good enough ?
Is that really why you went to multicore?

This is a non-ITAR presentation, for public release and reproduction from FSW website. 4

Multicore Guidance CAST-32A
• Software Planning

– How many processors, what OS architectures and how they manage the cores.

• Planning and configuration of MCP
– Document MCP settings to satisfy requirements

– Document MCP settings contingency plans

– Document resource partitioning and how you plan to mitigate contention issues.

• Interference Channels and Resource Usage
– Identified the interference channels and chosen means of mitigation of the interference.

• Software Verification
– Verify all the hosted software components function correctly and have sufficient time to

complete their execution in the final configuration.

– Verify that the data and control couplings between all the individual software components
hosted on the same core or on different cores.

• Error Detection and Handling, and Safety Nets

• Reporting of Compliance with the Objectives of this Document

 https://www.faa.gov/aircraft/air_cert/design_approvals/air_software/cast/cast_papers/media/cast-32A.pdf

This is a non-ITAR presentation, for public release and reproduction from FSW website. 5

Specifically not in CAST-32A

• Dynamically re-allocated of threads to
different cores by the operating system.

• Hyperthreading. The idea of using the
hyperthreading technology opens the door to
contention issues inside the processor that you
have no way of knowing about let alone
controlling.

This is a non-ITAR presentation, for public release and reproduction from FSW website. 6

Multicore Processor Objectives
OBJECTIVES DALs DESCRIPTION DDC-I COMMENT

MCP_Planning_1: A, B, & C

MCP_Resource_Usage_1: A, B, & C

MCP_Resource_Usage_2: A & B

MCP_Planning_2 A, B, & C

MCP_Resource_Usage_3: A & B

MCP_Resource_Usage_4: A & B

MCP_Software_1: A, B, & C

MCP_Software_2: A, B, & C

MCP_Error_Handling_1: A & B

MCP_Accomplishment_Summary_1: A, B, & C

This is a non-ITAR presentation, for public release and reproduction from FSW website. 7

MCP Objectives Sample for Deos
OBJECTIVES DALs DESCRIPTION DDC-I COMMENT

MCP_Planning_1: A, B,

& C

The applicant’s software plans or other deliverable

documents:

1) Identify the specific MCP processor, including

the unique identifier from the manufacturer,

Deos supports many different multicore processors (MCP), this is product

specific to be addressed by target system developer.

2) Identify the number of active cores, Deos supports the ability to select the number of which cores of an MCP to

use, this determination is product specific to be addressed by target system

developer.

3) ………………….

4) ………………….

5) Identify whether or not the MCP device will be

used in an IMA platform to host software

applications from more than one system,

Deos provides support for the development of IMA systems with multiple

levels of safety. The desire to take advantage of these features is product

specific to be addressed by target system developer

6) Identify whether or not the MCP Platform will

provide Robust Resource and / or Time

Partitioning as defined in this document,

The MCP Platform will provide Robust Resource and Time Partitioning as

defined in CAST-32A.

The Deos product line provides Robust Resource Partitioning and Robust Time

Partitioning by giving the target system developer interference channel

solutions that range from elimination of the interference channel to a

definitive bound on the interference channel utilizing features like Safe

Scheduling, Cache Partitioning, and bounding memory transactions.

MCP_Resource_Us

age_1:

A, B,

& C

The applicant has determined and documented

the MCP configuration settings that will enable the

hardware and the software hosted on the MCP to

satisfy the functional, performance and timing

requirements of the system.

DDC-I provides a detailed users guides for the functionality and configuration

of Deos. The target system developer is responsible for using these Users

Guides to ensure correct configuration as well as CBIT check of configuration,

if applicable

This is a non-ITAR presentation, for public release and reproduction from FSW website. 8

Target Hardware

Target Software

User Mode Device Drivers

Deos High-Level Architecture

Network
DAL E

Application 2

 Partition 5
 DAL C

Partition 4
DAL B

Platform hardware
(RAM, flash, timer, interrupt controller)

Application 1

Partition 3

Partition 2

DAL A

Partition 1

DAL C

Deos kernel

Registry PAL I/O Interrupts

Application hardware
(I/O devices, Serial buses, etc)

I/O
Interrupts

Ethernet
chipset

… loosely-coupled, modular application software partitions.

Driver library

Graphics
chipset

Graphics
DAL B

User Space

Kernel
Space

Driver
library Driver library

USB

CAN

 Driver library

Audio

RAM

Socket
Library
DAL A

CPU

C
P

U

C
P

U

C
P

U

This is a non-ITAR presentation, for public release and reproduction from FSW website. 9

Safety Critical Multi-Core
Safety Critical Multicore Concerns:

1. Bound & control interference patterns
A. Minimize contention for shared resources (e.g., cache & memory)
B. Coordinate behaviors amongst cores

2. Getting good value from adding secondary cores
Example concern: WCE will increase due to multicore interference

patterns

Deos Multicore Solutions: SafeMC

1. Reduce interference patterns and reduce WCETs
A. Memory pooling & cache partitioning

B. Safe-scheduling

2. Performance enhancing features
A. Slack scheduling, including Window Activation for multicore

Recovers and applies additional slack resulting from higher WCETs

B. Enable deterministic interrupting devices

This is a non-ITAR presentation, for public release and reproduction from FSW website.
10

Cache In Deterministic Systems

• The greatest performance factor for modern processors

• Growing in size and number of levels (e.g., L1, L2, and L3)

• Left uncontrolled, cache will cause performance
variability (e.g., cache thrashing which increases the gap
between best and worst case execution time (WCET))

 Studies show that cache variability must be resolved in
deterministic multicore systems

This is a non-ITAR presentation, for public release and reproduction from FSW website. 11

Cache Performance Variability

Cache variability is a significant issue for deterministic systems,
that must be solved. Fixes include:

1. Cache flushing (e.g., flush cache between applications)

– Good: Reduces performance variability

– Bad: Forces cache flush overheads at an application context switch

2. Disabling of cache
– Good: Eliminates cache performance variability

– Bad: Huge performance penalty – forces the processor to a low level of
performance. Also impractical for multicore processors.

3. Cache Partitioning – Several option with various results
– Deos cache partitioning (patented)

– Cache locking (not available on ARM)

This is a non-ITAR presentation, for public release and reproduction from FSW website. 12

Cache Partitioning via Cache Locking

Some processors allow selective cache locking:
– Lock lines, ways, or entire cache
– Core based partitions

Issues:
– Processor specific & not portable
– Requires application specific code in kernel and/or

driver
• Application manages cache

– Requires kernel/application linkage – Slow and high
DAL

– Latest Arm processors don’t support.

This is a non-ITAR presentation, for public release and reproduction from FSW website. 13

Cache Partitioning with Deos

• Partitions Cache per Application
• Best performance (reduces WCE) by eliminating shared cache

thrashing across applications
• Applications don’t have to manage cache

• No H/W cache locking instructions used.

• Portable
• Processor Agnostic (does not require H/W “hooks”)
• Memory pools and partitions defined in XML configuration file, NOT in

source code
• No re-verification required platform to platform

• Applicable to both Mono-core & Multicore (x86, PPC
and ARM)

• Patented Mechanism

This is a non-ITAR presentation, for public release and reproduction from FSW website. 14

Core 0

Memory Pools & Cache Partitioning

… optimizes application ACET/WCET behaviors & bounds WCET behavior.

Core 1
 APP 0 APP 1

Shared Cache

RAM

addresses

Segmented per

application

Cache segmented

into “partitions” per

application

Partitions memory

segmented into

“pools”

pool 0 pool 1 pool 4 pool 2 pool 3

APP 4 APP 2 APP 3

APP 0 APP 1 APP 4 APP 2 APP 3

RAM Off Chip RAM (example)

• Reduces cache thrashing

• XML Configuration (portable)

• Cache contention is bounded

• Partition per application per core.

• No application specific code

• No cache locking instructions used.

Memory Pooling -
Enables physical

memory segmentation

(a key advantage for

microcontrollers)

This is a non-ITAR presentation, for public release and reproduction from FSW website. 15

Cache Partitioning – Bounding WCETs

• Bounds & controls cache interference patterns

• Can dramatically improve WCET performance

This is a non-ITAR presentation, for public release and reproduction from FSW website. 16

Memory Pools & Cache Partitioning

Core 0

pool B

app3

pool A

app2 app1

pool D

app7 app9 app8 app4 app5

pool B pool C

app6

Core 1

Shared Cache

RAM addresses

segmented into “pools”

Cache

Segmented

 into

“partitions”

Apps mapped

to “pools”

– With Deos’ cache

partitioning:
• Min to no cross-core

contention

• Min to no cross-pool

contention

• Partitions can be

shared across cores

• Potential interference

patterns are known

• Cache contention is

bounded & minimized

Core 0 partition

pool A

app2 app1

Core 1 partition

pool C

app6

pool D

app8 app7 app9

shared partition

pool B

app4 app3 app5

… optimizes application ACET/WCET behaviors & bounds WCET behavior.

Patent Protected Methodology
US8069308B2, https://www.google.com/patents/US8069308?dq=US8069308&hl=en&sa=X&ved=0ahUKEwi7qqmC0OjTAhWJSiYKHVBBDFQQ6AEIJzAA
US20150205724A1, https://www.google.com/patents/US20150205724?dq=US20150205724+A1&hl=en&sa=X&ved=0ahUKEwj7pvbgz-jTAhVFQiYKHZP-BhcQ6AEIKTAA
US20090204764A1, https://www.google.com/patents/US20090204764?dq=US+20090204764+A1&hl=en&sa=X&ved=0ahUKEwjQvOT1z-jTAhUE4CYKHSJRCV0Q6AEIJzAA
EP2090987B1, https://www.google.com/patents/EP2090987B1?cl=en&dq=EP2090987B1&hl=en&sa=X&ved=0ahUKEwiT5aSN0OjTAhVBOyYKHZZEA68Q6AEIJzAA
EP3109765A1, https://www.google.com/patents/EP3109765A1?cl=en&dq=EP3109765A1&hl=en&sa=X&ved=0ahUKEwiN5cu10OjTAhVI0iYKHYQVBAMQ6AEIJzAA
EP2090987A1 https://www.google.com/patents/EP2090987B1?cl=en&dq=EP2090987A1&hl=en&sa=X&ved=0ahUKEwj_65nC0OjTAhUG7CYKHQl4DgEQ6AEIJzAA

This is a non-ITAR presentation, for public release and reproduction from FSW website. 17

https://www.google.com/patents/US8069308?dq=US8069308&hl=en&sa=X&ved=0ahUKEwi7qqmC0OjTAhWJSiYKHVBBDFQQ6AEIJzAA
https://www.google.com/patents/US8069308?dq=US8069308&hl=en&sa=X&ved=0ahUKEwi7qqmC0OjTAhWJSiYKHVBBDFQQ6AEIJzAA
https://www.google.com/patents/US20150205724?dq=US20150205724+A1&hl=en&sa=X&ved=0ahUKEwj7pvbgz-jTAhVFQiYKHZP-BhcQ6AEIKTAA
https://www.google.com/patents/US20150205724?dq=US20150205724+A1&hl=en&sa=X&ved=0ahUKEwj7pvbgz-jTAhVFQiYKHZP-BhcQ6AEIKTAA
https://www.google.com/patents/US20150205724?dq=US20150205724+A1&hl=en&sa=X&ved=0ahUKEwj7pvbgz-jTAhVFQiYKHZP-BhcQ6AEIKTAA
https://www.google.com/patents/US20150205724?dq=US20150205724+A1&hl=en&sa=X&ved=0ahUKEwj7pvbgz-jTAhVFQiYKHZP-BhcQ6AEIKTAA
https://www.google.com/patents/US20150205724?dq=US20150205724+A1&hl=en&sa=X&ved=0ahUKEwj7pvbgz-jTAhVFQiYKHZP-BhcQ6AEIKTAA
https://www.google.com/patents/US20150205724?dq=US20150205724+A1&hl=en&sa=X&ved=0ahUKEwj7pvbgz-jTAhVFQiYKHZP-BhcQ6AEIKTAA
https://www.google.com/patents/US20090204764?dq=US+20090204764+A1&hl=en&sa=X&ved=0ahUKEwjQvOT1z-jTAhUE4CYKHSJRCV0Q6AEIJzAA
https://www.google.com/patents/US20090204764?dq=US+20090204764+A1&hl=en&sa=X&ved=0ahUKEwjQvOT1z-jTAhUE4CYKHSJRCV0Q6AEIJzAA
https://www.google.com/patents/US20090204764?dq=US+20090204764+A1&hl=en&sa=X&ved=0ahUKEwjQvOT1z-jTAhUE4CYKHSJRCV0Q6AEIJzAA
https://www.google.com/patents/US20090204764?dq=US+20090204764+A1&hl=en&sa=X&ved=0ahUKEwjQvOT1z-jTAhUE4CYKHSJRCV0Q6AEIJzAA
https://www.google.com/patents/EP2090987B1?cl=en&dq=EP2090987B1&hl=en&sa=X&ved=0ahUKEwiT5aSN0OjTAhVBOyYKHZZEA68Q6AEIJzAA
https://www.google.com/patents/EP2090987B1?cl=en&dq=EP2090987B1&hl=en&sa=X&ved=0ahUKEwiT5aSN0OjTAhVBOyYKHZZEA68Q6AEIJzAA
https://www.google.com/patents/EP3109765A1?cl=en&dq=EP3109765A1&hl=en&sa=X&ved=0ahUKEwiN5cu10OjTAhVI0iYKHYQVBAMQ6AEIJzAA
https://www.google.com/patents/EP3109765A1?cl=en&dq=EP3109765A1&hl=en&sa=X&ved=0ahUKEwiN5cu10OjTAhVI0iYKHYQVBAMQ6AEIJzAA
https://www.google.com/patents/EP2090987B1?cl=en&dq=EP2090987A1&hl=en&sa=X&ved=0ahUKEwj_65nC0OjTAhUG7CYKHQl4DgEQ6AEIJzAA
https://www.google.com/patents/EP2090987B1?cl=en&dq=EP2090987A1&hl=en&sa=X&ved=0ahUKEwj_65nC0OjTAhUG7CYKHQl4DgEQ6AEIJzAA

Deos Safe Scheduling for Multicore

Sch. 1
(653)

Sch. 2
(RMA)

Sch. 4
(POSIX)

Sch. 6
(653)

Major Frame

Core
0

Core
1

• Bounds, controls & minimizes cross-core contention

• Major frame partitioned into “windows”

• Window boundaries align across cores

• Multiple scheduler/API types available

• Fine Grain locking for resource protection

• Allows for a mix of safety apps, or safety & non-safety apps

… optimizes application ACET/WCET behaviors and bounds WCET behavior.

Sch. 3
(POSIX)

Sch. 3
(POSIX)

Sch. 5
(653)

Sch. 7
(653)

Win. 1 Win. 2 Win. 3 Win. 4

Bounded
Multiprocessing

This is a non-ITAR presentation, for public release and reproduction from FSW website. 18

Fine Grain Locking

• In the kernel all locking is done in a single core space only,
therefore, no cross core blocking is possible.
– No cross core locks (No resources used for all cores)

– No single lock for scheduling (each core has a scheduler)

– No single lock for all kernel interface objects (each object created has its own lock)

• Cross core blocking is only possible if a developer designs it to
happen
– Threads on different cores share a kernel interface object (semaphore, event,

mailbox, etc.)

– Thread creates another thread and schedules it on a different core

– Threads of different cores share a memory pool

– In these cases affects limited to the cores in question and not the others.

This is a non-ITAR presentation, for public release and reproduction from FSW website. 19

Memory Throttling

• Built-in Performance Counters
– Certain processors have hardware capability to

count processor level events.

– Setup CPU to send interrupt when a particular
performance counter threshold is reached.

– For example, last level cache miss is a
selectable event to be counted.

– When threshold is hit for a particular partition,
a decision can be made to on how to deal with
the offending partition.

LLC Misses

This is a non-ITAR presentation, for public release and reproduction from FSW website. 20

Multicore Test Setup

• This example consists of two Deos processes

• Worker process is made up of two threads
– Writer - job is to fill a 600 KByte RAM buffer

– Checksummer - computes a checksum over this buffer

– Execution order is coordinated such that Checksummer's execution
always closely follows Writer's.

– Repeat 100 times and measure max, min, average

• Trasher process has a single thread, whose role is to disrupt
cache and generate interfering memory bus activity.

• Goal to show how cooperation is the application design value
for Multicore.

This is a non-ITAR presentation, for public release and reproduction from FSW website. 21

Cache Partitioning Results

• Single Core with cache partitioning

• Multi-core with no cache partitioning

• Multi-core with cache partitioning by Core

• Multi-core with cache partitioning by Application

0

10

20

30

40

50

60

70

80

SC Part MC No Part MC PartByCore MC PartByApp

47.059

71.402

57.973

28.464

High TSC

Low TSC

Ave TSC

TSC – Time Stamp Counter (msec)

This is a non-ITAR presentation, for public release and reproduction from FSW website. 22

SC Cache Partitioning (47msec)

Core 0

Memory Pool 1 Memory Pool 2

• Writer and Checksummer threads on same core so they are waiting on each other
• Trasher is on same core so trasher can not run or interfere with writer.
• Trasher in different memory pool so doesn’t affect cache.

Checksummer
thread

Trasher
thread

Writer thread

This is a non-ITAR presentation, for public release and reproduction from FSW website. 23

Multicore No Cache Partitioning
(71.4ms)

Core 0

Core 1

Memory Pool 1

Trasher thread

• Writer and Checksummer threads on same core at the same priority so checksummer
waits till writer is complete.

• Trasher is on different core so trasher creating memory bus contention (MBC)
• Trasher in same memory pool causes it to be a slower.(cache is always dirty)

Checksummer
thread

Writer thread

This is a non-ITAR presentation, for public release and reproduction from FSW website. 24

Multicore Cache Partitioning by Core
(58msec)

Core 0

Core 1

Memory Pool 2

Trasher thread

Checksummer
thread

Writer thread

Memory Pool 1

• Writer and Checksummer threads on same core so they have to wait on each other
• Trasher is on different core running more often so trasher creating MBC but not

trashing test memory.

This is a non-ITAR presentation, for public release and reproduction from FSW website. 25

Multicore Cache Partitioning by App
(28.5msec)

Core 0

Core 1

Memory Pool 2

Checksummer thread

Writer thread

Memory Pool 2

Core 2 Trasher thread

Memory Pool 1

• Writer and Checksummer threads on different core so they can coordinate. (Never
waiting on each other)

• Trasher is on different core so trasher creating MBC

This is a non-ITAR presentation, for public release and reproduction from FSW website. 26

Multicore Cache Partitioning by App
(23msec)

Core 0

Memory Pool 2

Writer thread

Core 2
Checksummer thread

Memory Pool 2

Trasher thread

Memory Pool 1

• Writer and Checksummer threads on different core so they can coordinate. (Never
waiting on each other.)

• Trasher is on same core as writer so trasher can not run or interfere with writer.

This is a non-ITAR presentation, for public release and reproduction from FSW website. 27

Lessons Learned

• Multicore focus is typically on contention
when it should also be on cooperation. You
are running multiple cores to get more work
done.

• Results show
– Best Case Timing is when threads are on multiple

cores coordinating and contention is minimized.

– Worst Case Timing is when there is poor or no
cache control and poor or no application
coordination.

This is a non-ITAR presentation, for public release and reproduction from FSW website. 28

Thank you!
Contact Information

Gary Gilliland

ggilliland@ddci.com

 www.ddci.com

mailto:ggilliland@ddci.com
mailto:ggilliland@ddci.com

