
1
© 2018 The Aerospace Corporation

Unraveling Real Time

Dr. Christopher Landauer

Information Systems & Cyber Divison

03 December 2018

 Approved for public release. OTR 2019-00054

2

Dr. Christopher Landauer

The Aerospace Corporation

chris.landauer@aero.org

Flight Software Workshop

03-06 December 2018

Southwest Research Institute

San Antonio, Texas

Unraveling Real Time

3

Outline

• Overview / Summary

• Hardware Assumptions

• Hardware Speculations

• Software Approach

• Software Implications

• Software Issues

• Mathematical Implications and Speculations

• Conclusions and Prospects

4

Overview / Summary

• Issue

– Real-time coordination required for flight software is complicated;

but perhaps it is not as necessary as we think.

– This presentation is a speculation about the issue.

• Hypothesis

– Numerical computations need recent enough data, not always the most recent data.

• Implications

– There are hardware, design, software and mathematical issues.

• The main architectural idea:

– Assign all separate tasks into many small concurrent processors,

one task per processor, running at different speeds.

– Communication via direct or targeted multicast writes.

• There are many experiments to be performed.

– All are marked in red (experiment)

5

Hardware Assumptions

• Processors that can run at different speeds and save power at slower speeds.

• Concurrent processors with independent clocks:

– Incoming data all timestamped (by sender AND receiver clock)

– They can use that to synchronize clocks (experiment)

(cyclone synchronization algorithm from 1998 or so),

– or not (if this idea works, small drift rates will not matter). (experiment)

• Direct Memory Access (DMA) / Multicast rules: (experiment)

– No interrupts at receiver on writes:

• The receiver uses whatever values are there when it accesses them.

– Overlapping writes are possible; collect them for consensus.

• Complain to sender only if the values are different.

– Overlapping reads cannot happen:

• There is no parallelism in each processor's main computational task.

– Writes take precedence over reads;

• reads wait for writes to finish, unless read is far along in its operation. (experiment)

• Small Processor memories can be fast:

– DDR3 800MHz (beagle bone) has 10-15ns latency, 15-20ns for 8 bytes

6

Hardware Speculations

• New idea (maybe) - ECC processors

– Many modern computers use ECC memory,

• There is a common (72, 64) code used at least since the VAX 11/780,

derived from the Hamming (127, 120) code,

– but none use ECC processing;

– No modern CPU ``does'' arithmetic.

• They interpret table-driven models of finite integer arithmetic,

with arithmetic operations are defined by tables.

• They can easily use similar tables for (72, 64)-arithmetic. (experiment)

– This is related to homomorphic encryption.

• We expect that these processors do not need to be as radiation hardened.

(experiment)

• New idea (maybe) - complex ECC codes

– Think of the memory as a classical communication channel

for moving bits from one time to a later time.

– Use some of the well-known concatenated codes. (experiment)

• Consider the same possibility for processors. (experiment)

7

Software Approach

• Assign one task per processor.

• Duty cycles for tasks mean duty cycles for processors.

– Each task has a relatively well-defined timing need

(e.g., 2400Hz, 1200, 400, 300, 100, 50, 20, 1).

• Some classes of tasks:

– Navigation: compute position, velocity, acceleration from sensors;

– Attitude: compute actual and desired attitude from sensors and mission plan;

– Guidance: compute steering coefficients for desired trajectory and attitude;

– Power-phase autopilot: roll, pitch, yaw control during main engine firing via engine

gimbals;

– Coast-phase autopilot: roll, pitch, yaw control during coast via attitude control jets;

– Propellant management: maintain proper pressures and ratio of liquids;

– Many more.

• Tasks assigned to multiple processors for computational redundancy.

– Each task reads recent enough data for their computations.

– Careful separation within each task of inputs from computations.

• Task / processor communication is via DMA writes or multicast messages
(experiment)

8

Software Implications

• Duty cycle management

– Clock synchronization to a definable precision, not necessarily the best possible

precision. (experiment)

• Task assignment

– Each task instance also has a priority among the instances of that task

(analogous to identifying master and backups).

• Interfaces / communication data volume

– Individual or block transfers (experiment)

• Filter equations with unequal measurement data arrival intervals.

– Well-known mathematics for distributed filters.

• Fault management

– Status writes to a monitor class of tasks;

– Active failover of tasks (including monitor);

– Re-assignment after ``offline'' processor reset, (experiment)

or retirement of processors with too many errors.

9

Software Issues

• Multicast communication (experiment)

– Protocols to manage: accepting, interfering, blocking, timing

• Dependencies defined by shared variables

– producers and consumers, volume, timing (experiment)

• Data discard policies (experiment)

• Interference among multiple writes (experiment)

– Collecting and computing consensus of opinion (experiment)

– Byzantine generals problem

• Detecting communication anomalies (experiment)

– Different kinds of problems: silence, lies and spoofing, blathering

– Different detection methods, different responses (experiment)

• Effects of occasional delays and dropouts

– Our hypothesis is that these can be made to be minor (experiment)

• Task assignment, re-assignment, and interruption

– Monitor protocols (experiment)

• Refinement and reduction of uncertainties (experiment)

• Does using more instances of faster task cycles help? (experiment)

• Coordination protocols for distributed computing (experiment)

10

Mathematical Implications and Speculations

• Dynamics: coupled state equations with occasional missing / old data

– Compute the delay / absence threshold below which results are essentially the same

(experiment)

– Map delay / absence level to resulting error covariance (experiment)

• Filter equations with unequal data arrival intervals

– Modify state and covariance update equations for Kalman filter (experiment)

– Other (usually simpler) filters (experiment)

• Asynchronous interleaved filters

– Data is distributed to multiple parallel filters: (experiment)

• Alternately, with or without overlap, other distribution patterns. (experiment)

– Comparison of results (experiment)

• Multistage filters and successively refined measurements

– Result of one filter used as a cleaned up measurement for the next (experiment)

11

Conclusions and Prospects

• This approach / issue is easy to study.

– It has the potential to simplify flight software.

• There is a tremendous amount of experimentation to do:

– In hardware;

– In software;

– In mathematics.

• There is some good news.

• The software system design can start with many mostly known decisions:

– The set of tasks is known (we have added a set of monitor tasks).

– Their respective duty cycle requirements or expectations are known.

– Their respective data and computation requirements are known.

– Communication dependencies are known.

