
Corroding SpaceCorroding Space
Considering Rust as a Flight Software LanguageConsidering Rust as a Flight Software Language

— Ryan Plauche (ryan@kubos.com)

This Presentation is aboutThis Presentation is about

This Presentation is aboutThis Presentation is about
What is Rust?

This Presentation is aboutThis Presentation is about
What is Rust?
Why do we use Rust?

This Presentation is aboutThis Presentation is about
What is Rust?
Why do we use Rust?
Why do we like Rust?

This Presentation is aboutThis Presentation is about
What is Rust?
Why do we use Rust?
Why do we like Rust?
Why hesitate about Rust?

This Presentation is not aboutThis Presentation is not about

This Presentation is not aboutThis Presentation is not about
Why you should only use Rust

This Presentation is not aboutThis Presentation is not about
Why you should only use Rust
Why other languages are terrible

This Presentation is not aboutThis Presentation is not about
Why you should only use Rust
Why other languages are terrible
Which language has the best mascot

BackgroundBackground

BackgroundBackground
Software Engineer for Kubos

BackgroundBackground
Software Engineer for Kubos
Rust-based Flight Software

BackgroundBackground
Software Engineer for Kubos
Rust-based Flight Software
github.com/kubos/kubos

What is Rust?What is Rust?

Rust in 16 wordsRust in 16 words
Rust is a systems programming language that runs blazingly fast,

prevents segfaults and guarantees thread safety.

From - https://www.rust-lang.org/

https://www.rust-lang.org/

Rust in 6 pointsRust in 6 points

Rust in 6 pointsRust in 6 points
Statically Compiled

Rust in 6 pointsRust in 6 points
Statically Compiled
LLVM Based

Rust in 6 pointsRust in 6 points
Statically Compiled
LLVM Based
Strong & Expressive Types

Rust in 6 pointsRust in 6 points
Statically Compiled
LLVM Based
Strong & Expressive Types
Compile Time Ownership Checks

Rust in 6 pointsRust in 6 points
Statically Compiled
LLVM Based
Strong & Expressive Types
Compile Time Ownership Checks
Static Garbage Collector

Rust in 6 pointsRust in 6 points
Statically Compiled
LLVM Based
Strong & Expressive Types
Compile Time Ownership Checks
Static Garbage Collector
Rich Standard Library

Why do we use Rust?Why do we use Rust?

“How do you account for the high error rate of C?”“How do you account for the high error rate of C?”

Customer CentricCustomer Centric

GraphQLGraphQL

Why do we like Rust?Why do we like Rust?
Error Handling
Traits & Generics
Ownership
Testing
Tooling

Error HandlingError Handling

Enums for ErrorsEnums for Errors
pub enum DeviceError {
 ReadTimeout,
 WriteTimeout,
 ErrorReturned,
 CommandFailed,
}

Expressive ErrorsExpressive Errors
pub enum DeviceCommand {
 EnableLED(u16),
 DisableLED(u16),
}

pub enum DeviceError {
 ReadTimeout,
 WriteTimeout,
 ErrorReturned(String),
 CommandFailed(DeviceCommand),
}

The Result TypeThe Result Type
enum Result<T, E> {
 Ok(T),
 Err(E),
}

fn read_memory(addr: u32) -> Result<u32, DeviceError> {
 ...
 if read_ok {
 Ok(0x100)
 } else {
 Err(DeviceError::ReadTimeout)
 }
}

Returning ErrorsReturning Errors
pub fn read_memory(addr: u32) -> Result<u32, DeviceError> { ... }

pub fn read_status() -> Result<bool, DeviceError> {
 let mem_value = match read_memory(0x100) {
 Ok(num) => num,
 Err(e) => return Err(e),
 };

 return validate_status(mem_value);
}

Returning ErrorsReturning Errors
pub fn read_memory(addr: u32) -> Result<u16, DeviceError> { ... }

pub fn read_status() -> Result<bool, DeviceError> {
 let mem_value = read_memory(0x100)?;

 return validate_status(mem_value);
}

Traits & GenericsTraits & Generics

Defining Behavior with TraitsDefining Behavior with Traits
pub trait DeviceLogger {
 fn name(&self) -> String;
 fn status(&self) -> DeviceStatus;
 fn error(&self) -> DeviceError;
}

Defining Behavior with TraitsDefining Behavior with Traits
pub struct StarTracker {}

impl DeviceLogger for StarTracker {
 fn name(&self) -> String {
 "StarTracker".to_owned()
 }
 fn status(&self) -> DeviceStatus {
 self.read_status()
 }

 fn error(&self) -> DeviceError {
 self.read_error()
 }
}

Generics + TraitsGenerics + Traits
fn log_device_status<T: DeviceLogger>(device: &T) -> () {
 println!("{}:status:{}", device.name(), device.status());
 println!("{}:error:{}", device.name(), device.error());
}

Ownership & ReferencesOwnership & References
pub struct Device { status: bool }

pub fn trust_me_or_not(dev: &Device) -> () {
 ...
}

Ownership & ReferencesOwnership & References
pub struct Device { status: bool }

pub fn trust_me_really(dev: &mut Device) -> () {
 ...
}

TestingTesting
#[cfg(test)]
mod tests {

 #[test]
 fn simple_test() {
 assert_eq!(
 10, 10
);
 }
}

ToolingTooling

CargoCargo
$ cargo

Manage DependenciesManage Dependencies
[package]
name = "kubos-file-client"
version = "0.1.0"
authors = ["Ryan Plauche <ryan@kubos.co>"]

[dependencies]
clap = "2.32"
simplelog = "^0.5.0"
log = "^0.4.0"
file-protocol = { path = "../../libs/file-protocol" }
failure = "0.1.2"

Build Your CodeBuild Your Code
$ cargo build

Test Your CodeTest Your Code
$ cargo test

Run Your CodeRun Your Code
$ cargo run

Cross Compile Your CodeCross Compile Your Code
$ cargo build --target arm-unknown-linux-gnueabi

Generate Your DocsGenerate Your Docs
$ cargo doc

Why hesitate about Rust?Why hesitate about Rust?

Why hesitate about Rust?Why hesitate about Rust?
Overall Maturity

Why hesitate about Rust?Why hesitate about Rust?
Overall Maturity
Toolchain Availability

Why hesitate about Rust?Why hesitate about Rust?
Overall Maturity
Toolchain Availability
Young Ecosystem

Why hesitate about Rust?Why hesitate about Rust?
Overall Maturity
Toolchain Availability
Young Ecosystem
RTOS Support

Thank YouThank You

