Q
Corroding Space

Considering Rust as a Flight Software Language

— Ryan Plauche (ryan@kubos.com)

This Presentation Is ahout

This Presentation Is ahout

e Whatis Rust?

This Presentation Is ahout

e What is Rust?
e Why do we use Rust?

This Presentation Is ahout

e What is Rust?
e Why do we use Rust?
e Why do we like Rust?

This Presentation Is about

e What is Rust?

e Why do we use Rust?

e Why do we like Rust?

e Why hesitate about Rust?

D

This Presentation Is not about

D

This Presentation Is not about

e Why you should only use Rust

D

This Presentation Is not about

e Why you should only use Rust
e Why other languages are terrible

This Presentation Is not about

e Why you should only use Rust
e Why other languages are terrible
 Which language has the best mascot

QY KuBOS

/

Background

Background

e Software Engineer for Kubos

N KuUBOS

Background

e Software Engineer for Kubos
e Rust-based Flight Software

N KuUBOS

Background

e Software Engineer for Kubos
e Rust-based Flight Software
e github.com/kubos/kubos

What Is Rust?

N KuBOS

Rust in 16 words

Rust is a systems programming language that runs blazingly fast,
prevents segfaults and guarantees thread safety.

From - https://www.rust-lang.org/

https://www.rust-lang.org/

Rust in 6 points

N KuUBOS

Rust in 6 points
e Statically Compiled

N KuUBOS

Rust in 6 points

e Statically Compiled
e | LVM Based

N KuUBOS

Rust in 6 points

e Statically Compiled
e | LVM Based
e Strong & Expressive Types

QA KuBOS

Rust in 6 points

e Statically Compiled

e | LVM Based

e Strong & Expressive Types

e Compile Time Ownership Checks

QA KuBOS

Rust in 6 points

e Statically Compiled

e | VM Based

e Strong & Expressive Types

e Compile Time Ownership Checks
e Static Garbage Collector

N KuBOS

Rust in 6 points

e Statically Compiled

e | VM Based

e Strong & Expressive Types

e Compile Time Ownership Checks
e Static Garbage Collector

e Rich Standard Library

Why do we use Rust?

D

“How do you account for the high error rate of C7

Customer Centric

Graph(L

Why do we like Rust?

e Error Handling

e Traits & Generics
e Ownership

e Testing

e Tooling

Error Handling

D

Enums for Errors

pub enum DeviceError {
ReadTimeout,
WriteTimeout,
ErrorReturned,
CommandFailed,

Expressive Errors

pub enum DeviceCommand {

EnableLED(ul6),
DisablelLED(ul6),

}

pub enum DeviceError {
ReadTimeout,
WriteTimeout,

ErrorReturned(String),
CommandFailed(DeviceCommand),

D

enum Result<T, E> {
0k(T),
Err(E),

The Result Type

}

fn read_memory(addr: u32) -> Result<u32, DeviceError> {

if read_ok {
Ok (0x100)
} else {

Err(DeviceError: :ReadTimeout)

}

D

Returning Errors

pub fn read_memory(addr: u32) -> Result<u32, DeviceError> { ... }

pub fn read_status() -> Result<bool, DeviceError> {
let mem_value = match read_memory(0x100) {
Ok(num) => num,
Err(e) => return Err(e),

h

return validate_status(mem_value);

D

Returning Errors

pub fn read_memory(addr: u32) -> Result<ul6, DeviceError> { ... }

pub fn read_status() -> Result<bool, DeviceError> {
let mem_value = read_memory(0x100)?;

return validate_status(mem_value);

Traits & Generics

D

Defining Behavior with Traits

pub trait DevicelLogger {
fn name(&self) -> String;
fn status(&self) -> DeviceStatus;
fn error(&self) -> DeviceError;

Defining Behavior with Traits

pub struct StarTracker {}

impl DevicelLogger for StarTracker {
fn name(&self) -> String {
"StarTracker".to_owned()
b
fn status(&self) -> DeviceStatus {
self.read_status()

}

fn error(&self) -> DeviceError {
self.read_error()

}

D

Generics + Traits

fn log_device_status<T: DevicelLogger>(device: &T) -> () {
println!("{}:status:{}", device.name(), device.status());
println!("{}:error:{}", device.name(), device.error());

D

Ownership & References

pub struct Device { status: bool }

pub fn trust_me_or_not(dev: &Device) -> () {

3

D

Ownership & References

pub struct Device { status: bool }

pub fn trust_me_really(dev: &mut Device) -> () {

3

N KuUBOS

Testing

Tooling

Cargo

D

Manage Dependencies

[package]
name = "kubos-file-client"
version = "0.1.0"

authors = ["Ryan Plauche <ryan@kubos.co>"]

[dependencies]

clap = "2.32"

simplelog = "7N0.5.0"

log = "n0.4.0"

file-protocol = { path = "../../1libs/file-protocol" }

failure = "0.1.2"

Build Your Code

$ cargo build

Test Your Code

Run Your Code

$ cargo run

Gross Compile Your Code

$ cargo build --target arm-unknown-linux-gnueabil

Generate Your Docs

$ cargo doc

Why hesitate ahout Rust?

Why hesitate about Rust?

e Overall Maturity

Why hesitate about Rust?

e Overall Maturity
e Toolchain Availability

Why hesitate ahout Rust?

e Overall Maturity
e Toolchain Availability
e Young Ecosystem

Why hesitate ahout Rust?

e Overall Maturity

e Toolchain Availability
e Young Ecosystem

e RTOS Support

Thank You

